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1. Introduction

In recent work [1] one of us (DM) proved an inequality satisfied by the global charges for

three-dimensional asymptotically anti-de Sitter initial data sets with spherical conformal

infinity. In this paper we extend that work in several directions by a consideration of more

general initial data sets (S, g,K) on a spin manifold S. The extensions are as follows:

• We prove the corresponding inequalities in dimensions n + 1, n ≥ 3, with a spin-

structure condition for non-spherical Scris (Theorem 1).

• For spherical Scris we obtain optimal inequalities for n equal to four and five, as well

as some natural but non-optimal inequalities for all n ≥ 3 (Theorem 2; by optimal

we mean that saturation of the inequality is a necessary and sufficient condition

for the existence of space-time Killing spinors at S). For n = 3, we show that the

total momentum cannot be null and give a sufficient condition slightly stronger than

equality for the data to be anti-de Sitter (Theorem 4). Still for n = 3, when the

associated space-time has a complete Scri with spherical cross-sections, we prove

that equality happens only in anti-de Sitter space-time (section 3.4).

• For toroidal Scris we obtain optimal inequalities for all n ≥ 3 (section 4.1), and we

point out the existence of large families of non-singular (non-vacuum) initial data

sets which saturate the inequality (sections 4.3 and 4.4).
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• We prove that, in dimension 3+1, with spherical or toroidal Scri, black hole solutions

saturating the inequality do not exist (section 3.2).

• We obtain an angular-momentum bound for general conformal boundaries at infin-

ity with covariantly constant spinors, again under a spin-structure condition (sec-

tion 4.2).

2. Global charges and their positivity

In this work we consider n-dimensional general relativistic data sets (S, g,K), which are

asymptotically anti-de Sitter (adS) in the following sense: first, we assume that there exists

a Riemannian background metric b which, in the asymptotic region, is of the form

b = dr2 + f̊(r)ȟ ,

where ȟ is either a unit round metric on Sn−1 (then with the cosmological constant Λ

normalised to −n, and up to change of origin in r, f̊(r) = sinh2 r), or ȟ is a Ricci flat

metric on an (n−1)-dimensional compact manifold n−1M (then, again up to these choices,

f̊(r) = e2r), where the space-dimension n is greater than or equal to 3. By [2], with those

f , the initial data (S, b, 0) arise from static solutions of vacuum Einstein equations with

a negative cosmological constant1. Note that in the spherical case, or if (n−1M, ȟ) is a

flat torus T n−1, then (S, b, 0) are initial data for anti-de Sitter space-time, or a quotient

thereof. In all cases (S, b, 0) provide initial data for a static Einstein metric.

Next, there is a well-established set of decay conditions which guarantee finite and well

defined global charges, see [3, 4], compare [5 – 7]. Following these works, we shall assume

that there exist constants k ≥ 1, α > n/2 and C > 0 such that for large r we have2

|g − b|b + |D̊g|b + · · · + | D̊ · · · D̊︸ ︷︷ ︸
k factors

g|b + |K|b + · · · + | D̊ · · · D̊︸ ︷︷ ︸
k−1 factors

K|b ≤ Ce−αr . (2.1)

Here | · |b denotes the norm of a tensor field with respect to the metric b, and D̊ is the

covariant derivative of b. These decay conditions have been chosen because of simplicity

of the analysis involved; it should be recognised that they are restrictive, and a completely

satisfactory treatment should allow weaker boundary conditions, compare [8] for a related

analysis in the context of a vanishing cosmological constant Λ = 0.

To define the global charges, let X be a Killing vector in the asymptotic region of the

associated background space-time. It is well known that each such X defines a Hamiltonian

associated with the flow along X [4, 7 – 9], as follows: Let V be the normal component of X

with respect to the space-time background metric, and let Y be the tangential component

thereof; when defined along a spacelike hypersurface, such pairs (V, Y ) are called Killing

1It might seem natural also to allow (n−1M, ȟ) to be a negatively curved Einstein manifold [2]. However,

we shall see shortly that such solutions do not seem to fit into a Witten-type positivity argument, which is

the main concern of this work.
2In many of our arguments it is sufficient to assume the weaker, integral-type, decay conditions of [8,

section 3], but we have not checked whether all the calculations go through under such conditions.
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Initial Data (KIDs). Then the Hamiltonian H(V, Y ) corresponding to X (which we identify

with the pair (V, Y )) takes the form:

H(V, Y ) := lim
R→∞

1

16π

∫

r=R

(
U

i(V ) + V
i(Y )

)
dSi , (2.2)

where

U
i(V ) := 2

√
det g

(
V gi[kgj]lD̊jgkl + D[iV gj]k(gjk − bjk

)
, (2.3)

V
i(Y ) := 2

√
det g

(
Ki

j − Kk
kδ

i
j

)
Y j . (2.4)

Here all indices are space indices, running from 1 to n, and D̊ is the Levi-Civita derivative

of the space background metric b.

The normalisation constant 1/16π in (2.2) is convenient in dimension 3+1 when I has

spherical cross-section, but rather arbitrary in higher dimensions, or when non-spherical

cross-sections are considered.

We shall give conditions under which a Witten-type proof of positivity of global charges

applies. By this we understand an identity for a spinor ψ, relating an appropriate compo-

nent of the global charges to an integral over S of a bilinear in ψ; the bilinear is positive

given a positivity hypothesis on the energy-momentum of the initial data set and a dif-

ferential equation for ψ at S, with suitable asymptotic conditions for ψ on S; positivity

of the relevant component of the global charge follows from a suitable existence theorem

for this differential equation; in the asymptotically-adS setting, we require ψ to be asymp-

totic to an imaginary Killing spinor, a notion which we define below. (For more details of

the Witten argument, giving the spinor identity and an existence theorem in this setting,

see e.g. [1, 3, 5, 8]. Examples in which the Witten argument does not apply are given

in [10, 11].)

Thus the Witten-type proof needs a positivity hypothesis on the energy-momentum

of the initial data set, which will be the dominant energy condition or DEC. Denoting the

cosmological constant by Λ, we set

ρ := R − |K|2 + |trgK|2 − 2Λ , J i = DjK
i
j − DiKj

j ,

where R is the scalar curvature of g. The DEC reads then

ρ ≥ |J |g . (2.5)

Next, we need an imaginary Killing spinor for the background metric b; by definition,

this is a spinor field ψ in the asymptotic region Sext := [R0,∞) × n−1M solving the set of

equations

∀ X ∈ TS D̊Xψ = −i

√
−Λ

2n(n − 1)
X · ψ , (2.6)

where X· denotes the Clifford product of X, and D̊ is the usual Riemannian spinorial

connection associated with the metric b. Such spinor fields are known to exist when n−1M

– 3 –
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is a sphere; we point out several (well known [12 – 16]) further examples, with alternative

topologies at infinity, in section 4 below. The field ψ is a section of a bundle of spinors3

which we will denote by S
′.

(It is worthwhile pointing out at this stage some more cases when the Witten-type

argument cannot be carried through: manifolds Sext, with (n−1M, ȟ) having negative Ricci

curvature, do not admit imaginary Killing spinors. This can be seen as follows: first, any

imaginary Killing spinor leads to a Killing vector in Sext. But it is known, e.g. from the

analysis in [17, appendix A], that there are no Killing vectors on Sext in this case. Thus,

no lower bounds on the mass can be obtained by Witten-type techniques when, e.g., n−1M

is a two-dimensional higher genus surface.)

For the Witten argument to go through, we need to assume that S admits a spin

structure. Note that the spinor field ψ already singles out a spin structure on Sext, which

is necessarily compatible with the one of S when n−1M is simply connected. However,

those spin structures might be incompatible when n−1M is not simply connected. A key,

rather restrictive, hypothesis in our work is that

the bundle S
′ over Sext extends to a bundle of spinors S over S . (2.7)

A short discussion of the hypothesis (2.7) is in order. First, (2.7) is satisfied by all

product topologies S = R × n−1M , or S = [0,∞) × n−1M . These examples include the

hyperbolic-cusp solutions (4.1) below, or the Kottler black holes [18] with toroidal topology

at infinity. On the other hand, (2.7) is not satisfied by the Horowitz-Myers solutions [10].

Now, in that last example S is the union of a compact set and of the asymptotic region

Sext, and in such a context we have the following4: If n−1M = T
2, the two-dimensional

torus, and S has no boundary (other than the conformal boundary at infinity), then the

trivial spin structure on T
2, which does admit parallel spinors, never extends [19, p. 91]

when compactness of the conformal completion of S is imposed. On the other hand,

for all higher-dimensional toroidal boundaries at infinity n−1M = T
n−1, n ≥ 4, compact

boundaryless fillings for the trivial spin structure of T
n−1 exist [19, p. 92]. All this leads

to a large class of examples where (2.7) holds.

For the analytical arguments to go through, we need further to assume that (S, g) is

complete, either without boundary, or with a compact boundary satisfying the following:

Let λ be the extrinsic curvature tensor of ∂S (considered as a submanifold of S, recall

that there is no space-time involved at this stage) with respect to an inward-pointing unit

normal ν, let h be the metric induced on ∂S by g. The boundary contribution which

arises in the Witten argument with a spinor field satisfying the boundary condition of [20]

(compare [21]) will have the favorable sign provided that the boundary is either weakly

3By a “spinor field” we mean a section of a hermitian bundle associated to the Spin principal bundle

over S , equipped with an action of the Clifford algebra of S via anti-hermitian bundle-morphisms. In what

follows we shall freely make use of “doubling constructions” such as the one in (2.11) below, and therefore

we do not impose the often-implicitly-used condition that the representation of the Clifford algebra carried

by the spinor bundle is irreducible.
4We are grateful to M. Stern for discussions and references concerning the compatibility of spin structures.
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future trapped,

trhλ + habKab ≤ 0 , (2.8)

or weakly past trapped, which corresponds to changing the sign in front of the K term in

(2.8). An alternative condition which allows one to conclude is that considered in [1, 3].

Setting k(ν) = Kiaν
idxa, where the xa’s are coordinates on ∂S, we then assume that

trhλ + |k(ν)|h ≤
√

−2(n − 1)Λ

n
(2.9)

(see [3, Remark 4.8] for a discussion of (2.9) when k(ν) = 0).

Without loss of generality [19], we can assume that the spinor bundle S is equipped

with a hermitian product 〈·, ·〉 such that Clifford multiplication by vectors tangent to S is

an anti-hermitian endomorphism. In the construction we will need a bundle isomorphism

γ0 : S → S with the following properties:

(γ0)2 = 1 , (2.10a)

∀X ∈ TS γ0X · = −X · γ0 , (2.10b)

(γ0)† = γ0 , (2.10c)

Dγ0 = γ0D , (2.10d)

where (γ0)† denotes the conjugate of γ0 with respect to the hermitian product 〈·, ·〉 (by a

small abuse of notation, we shall use this symbol for the inner product on spin-space in any

dimension), and X· denotes Clifford multiplication by X. Such a map always exists if S is

obtained by pulling-back to S a space-time spinor bundle, provided one has an externally

oriented isometric embedding of (S, g) in a Lorentzian space-time available. Then the

Clifford product N ·, where N is the field of Lorentzian unit normals to the image of S, has

the required properties. Regardless of whether or not such a map exists, one can always

replace S by a direct sum of two copies of S; then, for X ∈ TS, we let X· denote the

Clifford action of X and we set

γ0(ψ1, ψ2) := (ψ2, ψ1) , (2.11a)

X · (ψ1, ψ2) := (X · ψ1,−X · ψ2) , (2.11b)

DX(ψ1, ψ2) := (DXψ1,DXψ2) . (2.11c)

One checks that (2.11) defines a representation of the Clifford algebra of (S, b) on S ⊕ S,

and that (2.10a) holds.

One use of γ0 is to construct Killing vectors for the metric b out of imaginary Killing

spinors. Indeed, if ψ is such a spinor, and ei is a (locally defined) ON basis of TS, then

the vector field

Y = 〈ψ, γ0ei · ψ 〉ei

is a Killing vector of the metric b. Furthermore, the pair (V, Y ), where V = 〈ψ,ψ〉, defines

a b-KID, by which we mean a KID of (S, b, 0).

We can now give our first result:

– 5 –
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Theorem 1 (Positive charges theorem) Consider an initial data set (S, g,K) satis-

fying the positivity and fall-off conditions (2.5) and (2.1), with (S, g) complete, and with

finite total matter energy: ρ ∈ L1(S). We assume that either S has no boundary, or ∂S
is compact and either (2.8) (changing K to −K if necessary) or (2.9) holds. Suppose that

the Riemannian background metric b admits imaginary Killing spinors in the asymptotic

region, with respect to a spin structure which extends to the interior of S. Let K0 be the sub-

set of the set of b-KIDs which are of the form (〈ψ,ψ〉, 〈ψ, γ0ei ·ψ〉ei) for some b-imaginary

Killing spinor ψ. Then for all X = (V, Y ) ∈ K0 we have

H(V, Y ) ≥ 0 ,

with equality if and only if ψ asymptotes to an imaginary Killing spinor of (S, g,K) asso-

ciated with ∇.

Remark 1 It should be emphasised that the imaginary Killing spinors provided by Theo-

rem 1 are only defined along S, and not in an associated space-time if there is one.

Remark 2 The bundle of spinors which is used in the proof is arbitrary. We will freely

make use of this fact in our analysis in subsequent sections.

Proof: We use a Witten-type argument, as follows. Let (S, 〈·, ·〉) be any Riemannian

bundle of spinors over (S, }) with hermitian product 〈·, ·〉, such that Clifford multiplication

(which we denote by “·”) is anti-hermitian, and with a map γ0 satisfying (2.10a).

Given an initial data set (S, g,K), a vector field X, and a spinor field ξ we set

K(X) := Ki
jXiej · , (2.12)

∇Xξ := DXξ +
1

2
K(X)γ0ξ . (2.13)

Here ei is a local orthonormal basis of TS; it is straightforward to check that (2.12) does

not depend upon the choice of this basis.

The argument now has two main steps. First, one shows existence of a spinor χ

satisfying a modified Dirac equation,

ej ·
(
∇j + i

√
−Λ

2n(n − 1)
ej ·

)
χ = 0 , (2.14)

and which asymptotes to ψ, where ψ is an imaginary Killing spinor of the background met-

ric. This can be done by rather obvious modifications of the arguments in [3], compare [1],

see also [21, 22] for the treatment of the boundary terms arising from a non-empty ∂S.

Let us simply point out that one of the ingredients of the proof is a weighted Poincaré

inequality, established e.g. in [22] for the metrics of interest. This proves positivity of the

boundary integral in the Witten identity. The next step is to prove that this boundary

integral coincides with the Hamiltonian H(V, Y ). This is done by following the calculations

in [23] and [3]. We note that the relevant part of those calculations does not use the explicit

form of the imaginary Killing spinors, but only the equation satisfied by them. 2

– 6 –
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3. Spherical conformal infinity

A preferred set of background Killing vector fields is provided by those which are b-normal

to the initial data surface. The resulting Hamiltonians are usually interpreted as energies.

In contradistinction with the asymptotically flat case, where only one normal background

Killing vector field exists, if one assumes that conformal infinity has spherical space-like

sections, then there are several normal background Killing vector fields. This implies

that there is not a single energy, but rather an energy functional M . This functional M is

uniquely characterised by n+1 numbers m(µ), µ = 0, 1, . . . , n, which transform as a Lorentz

covector under asymptotic isometries5 of g, see [4, 5]. (The component m(0) coincides with

the Abbott-Deser mass under appropriate restrictions [4].) It follows that the Lorentzian

length of m(µ) is a geometric invariant of (S, g).

We start by reviewing the known 3+1 results. The asymptotically-adS-positive-energy

theorem implies that m(µ) is causal, future pointing [1, 20, 24] (compare [3, 5, 6]). If it

vanishes, then (S, g,K) are initial data for anti-de Sitter space-time.6

Quite generally, one can view the hyperbolic space as a unit spacelike hyperboloid in

R
n+1, the latter equipped with the Minkowski metric. If one assumes that m(µ) is timelike,

after applying an asymptotic isometry to obtain m(µ) = (m, 0, . . . , 0), the background

Killing vector fields tangent to S can now be split into rotations and “boosts”. In space-

time dimension four it is customary to define the rest-frame angular momentum as

j(i) := H(0, β(i)) ,

where the β(i)’s are the generators of rotations of S2, when embedded in R
3:

β(i) = εijkx
j∂k .

The numerical values of the remaining three Hamiltonians, associated with the vector

fields C(i) of (3.6) below, generating boost transformations, will be denoted by c(i). In

the asymptotically flat case the c(i)’s have the interpretation of the centre of mass of the

system, and can always be set to zero by a translation of the coordinates. This freedom

does not exist in the asymptotically adS situation. We will retain the name centre of mass

for the vector ~c = (c(i)).

It does not appear to be widely known that, in 3 + 1-dimensions, the positive energy

theorem for asymptotically adS initial data implies an upper bound on the center of mass

and the angular momentum in terms of m. This should be contrasted with the asymptot-

ically Minkowskian positive energy theorem, which bounds the space-momentum in terms

of the energy, but does not impose constraints either on angular momentum or on centre

of mass.7 Recall that with our choices so far the energy-momentum vector m(µ) lies along

5These isometries are, essentially, characterised by conformal isometries of the conformal boundary at

infinity (in the current case the sphere).
6In fact, the proof of this in [1] contains a gap which we fill, see the proof of Theorem 4, end of section 3.1

below.
7Schoen (seminar at the ESI, summer 2003) has shown that there is no bound on the ratio |~j|/m for

vacuum initial data sets with Λ = 0.
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the time axis. A rotation of the coordinate system aligns the angular momentum vector ~j

along the first coordinate axis. One can then rotate ~c = (c(i)) to lie in the x–y plane. It is

shown in [1] that the positivity theorem 1 implies the following inequality

m ≥
√

−Λ/3
√

(|j(1)| + |c(2)|)2 + c2
(1) , (3.1)

with vanishing m if and only if the initial data set arises from anti-de Sitter space-time.8

The inequality (3.1) can be rewritten in the manifestly rotation-invariant form

m ≥
√

−Λ/3

√
|~c|2 + |~j|2 + 2|~c ×~j| , (3.2)

where ~c×~j is the vector product, while |~j| =
√

j2
(1) + j2

(2) + j2
(3), etc. In particular we have

the striking upper bounds

m ≥
√

−Λ/3|~j| , m ≥
√

−Λ/3|~c| . (3.3)

Thus, both the length of the angular momentum vector and that of the centre of mass

vector are bounded by (a multiple of) the invariant norm of the mass functional M .

The first inequality in (3.3) is a familiar condition in the explicit family of Kerr-adS

metrics (see, e.g., [7]). Thus, the restriction on the range of parameters stemming from the

Kerr-adS family is not a result of our incomplete knowledge of the set of all solutions, but a

necessary property of non-singular asymptotically adS space-times satisfying the dominant

energy condition.

The above leaves several questions unanswered and suggest others: is there an equiv-

alent of (3.2) when m(µ) is null? What happens if the inequalities are equalities? What if
n−1M is a two-dimensional torus? What happens in higher dimensions? In this work we

give partial or complete answers to these questions.

First some notation: from now on, in space-time dimension n, we view the hyperbolic

space as the open unit ball Bn(1) ⊂ R
n equipped with the metric b = nb = ω−2δ, where δ

is the standard flat metric on R
n, and

ω =
1 − |x|2

2
.

In the obvious spin frame associated with this conformal representation9, the imaginary

Killing spinors of nb take the form

ψu = ω−1/2(1 − ixkγk)u (3.4)

8The normalisations of the Hamiltonians are a matter of conventions, ours are as follows: the mass

m(0) is the numerical value of the Hamiltonian associated with the background Killing vector ∂t when the

background adS metric is written in the form −(1−Λr2/n(n − 1))dt2 + (1−Λr2/n(n − 1))−1dr2 + r2dΩ2,

where dΩ2 is the unit round metric on the (n− 1)-dimensional sphere. This normalisation is convenient for

comparison with the Λ = 0 limit. Next, the angular momentum is the numerical value of the Hamiltonian

associated with the rotations of Sn−1 normalised so that a rotation by 2π is the identity. Finally, the center

of mass is normalised to make the right-hand-side of our inequalities look simple.
9More precisely, we take a spin frame which projects to the frame θi = ω−1dxi, and a local basis of the

spinor bundle in which the γµ’s are constant matrices.

– 8 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
4

(summation over k), where u is a spinor with constant entries, while the anti-hermitian

matrices γk with constant entries satisfy the flat space Clifford relations

γiγj + γjγi = −2δij .

(The ψu’s exhaust the space of imaginary Killing spinors because the map which assigns

u to ψu(0) is a bijection). As already mentioned, we will also need a hermitian matrix γ0,

with constant entries, satisfying

(γ0)2 = 1 , γ0γj + γjγ0 = 0 .

(If such a matrix does not exist we first make a doubling construction on the u’s as in

(2.11).) The KID (Vu, Y i
u) associated to ψu takes the form

Vu := 〈ψu, ψu〉 = 2
(
|u|2 1 + |x|2

1 − |x|2︸ ︷︷ ︸
=:V(0)

+〈u, iγku〉 (−2)xk

1 − |x|2︸ ︷︷ ︸
=:V(k)

)
, (3.5)

Y i
u∂i := 〈ψu, γ0γiψu〉ei

= 2〈u, γ0γku〉
(1 + |x|2

2
δi
k − xixk

)
∂i

︸ ︷︷ ︸
:=C(k)

+
1

2
〈u, iγ0(γkγi − γiγk)u〉 (xk∂i − xi∂k)︸ ︷︷ ︸

:=Ω(k)(i)

.

(3.6)

The KIDs (V(µ), 0), µ = 0, . . . , n, together with (0, C(k)), k = 1, . . . n, and (0,Ω(i)(j)),

1 ≤ i < j ≤ n, span the space of KIDs of (B(1), b, 0). The Ω(i)(j)’s obviously generate

rotations, and therefore it is natural to use the name angular momenta for the correspond-

ing global charges; these will be denoted by J(i)(j). As shown in [4, 5], the collection of

functions (V(0), V(1), . . . , V(n)), transforms as a Lorentz covector under conformal isometries

of the boundary at infinity. This is at the origin of the name energy-momentum vector,

denoted by m(µ), for the associated charges. As already mentioned at the beginning of

this section, the C(k)’s generate Lorentz boosts, when the hyperbolic space is embedded

as a hyperboloid into (n + 1)–dimensional Minkowski space; the associated charges will be

denoted by c(k), and called center of mass.

It will be convenient to reduce J(k)(j) to a canonical form. As a matrix J(k)(j) is anti-

symmetric, so that there exists an ON-frame in which J(k)(j) is block-diagonal, built out of

two-by-two blocks of the form [
0 ω(i)

−ω(i) 0

]
, (3.7)

with furthermore a last column of zeros in odd space-dimension.

Our next result is the following:

Theorem 2 Let S be spin with dimS = n ≥ 3 and suppose that n−1M = Sn−1 (then the

spin structures on S and Sext are necessarily compatible). Under the remaining hypotheses

of Theorem 1, m(µ) is causal future10 directed, or vanishes. Furthermore,

10The notion of causality of m(µ) is determined by a Lorentzian metric with signature (1, n) defined by

the group of isometries of hyperbolic space [4], with “future” defined as m(0) > 0.
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1. In every conformal frame11 it holds that

`m(0) ≥ |ω(1)| + |ω(2)| + · · · + |ω(l)| (3.8)

where

` :=

√
−n(n − 1)

2Λ
. (3.9)

2. If m(µ) is null, then the space of ∇–imaginary Killing sections of S ⊕ S over S (as

defined in (2.11)) is at least dimS–dimensional.

3. When m(µ) is timelike we also have, in a frame where m(i) = 0,

`m(0) ≥
√

c2
(1) + · · · + c2

(n) . (3.10)

4. If m(0) vanishes in some conformal frame, then all global charges vanish, and the

space-time metric along S is Einstein with vanishing Weyl tensor.

5. In dimension 5 + 1, in a specific frame which will be defined in the proof below, we

have the stronger inequality, which is optimal:

`m ≥
√

c2
(1) + c2

(3) + c2
(5) + ω2

(1) + ω2
(2) + 2

√
(ω(1)c(1))2 + (ω(2)c(3))2 + (ω(1)ω(2))2 .

(3.11)

6. Inequality (3.11) remains valid and optimal in dimension 4+ 1 after setting c(5) = 0.

7. Similarly (3.11) remains valid and optimal in dimension 3 + 1 after setting c(5) =

ω(2) = 0, and is then identical to (3.2).

Remark 3 Equation (3.11) suggests that in all dimensions the following (non-optimal)

inequality should hold

`m(0) ≥
√∑

i

c2
(i) +

(∑

i<j

|J(i)(j)|
)2

.

Remark 4 A class of 4+1 dimensional examples with m(0) 6= 0 saturating the bound (3.8)

is given by the metrics in [25] with F I
µν = 0, or the metrics in [26].

Remark 5 We will see in section 3.1 below that, in dimension 3 + 1, under natural hy-

potheses m(µ) cannot be null.

11Recall that the decomposition of g as a background plus a correction term involves a choice, and that

two such choices can be related to each other by a conformal transformation of the conformal boundary at

infinity, plus higher order corrections [4]. We use the term “conformal frame” to emphasise the fact that

such a choice has been made.
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Proof: To avoid annoying multiplicative factors involving the dimension and the cosmo-

logical constant, all calculations that follow are done assuming Λ = −n(n − 1)/2, so that

the background hyperbolic metric has all sectional curvatures equal to one. This can be

achieved by a scaling of the metric; the general result is then obtained by rescaling back.

We have

H(Vu, Y i
u) = 2H

(
|u|2(V(0), 0) + 〈u, iγku〉(V(k), 0)

+ 〈u, γ0γku〉(0, C(k)) +
1

4
〈u, iγ0(γkγj − γjγk

︸ ︷︷ ︸
=:2γkj

)u〉(0,Ω(k)(j))
)

= 2
(
|u|2 H(V(0), 0)︸ ︷︷ ︸

m(0)

+〈u, iγku〉H(V(k), 0)︸ ︷︷ ︸
m(k)

+ 〈u, γ0γku〉H(0, C(k))︸ ︷︷ ︸
c(k)

+
1

2
〈u, iγ0γkju〉H(0,Ω(k)(j))︸ ︷︷ ︸

J(k)(j)

)

= 2〈u,
(
m(0) + iγkm(k) + γ0γkc(k) +

1

2
iγ0γkjJ(k)(j)

)

︸ ︷︷ ︸
=:Q

u〉 .

By the positivity Theorem 1 the matrix Q must be positive semi-definite. Let us explore

the consequences thereof.

We start by restricting our considerations to spinors u satisfying

γ0u = ±u (3.12)

and |u|2 = 1 (recall that γ0 is hermitian, and its eigenvalues are plus or minus one since

its square is one). As γi anti-commutes with γ0, it maps (±1)–eigenspinors of γ0 to (∓1)–

eigenspinors; thus γiu and γ0γiu are each orthogonal to u. We conclude that, on the

eigenspaces of γ0, the following holds

〈u,Qu〉 = 〈u,
(
m(0) +

i

2
γ0γkjJ(k)(j)

)
u〉 .

For n = 3 (compare (3.7)) we have

1

2
iγ0γkjJ(k)(j) = ω(1)iγ

0γ1γ2 , (3.13)

while in higher dimensions 2l ≤ n ≤ 2l + 1 we can write

1

2
iγ0γkjJ(k)(j) = ω(1)iγ

0γ1γ2 + ω(2)iγ
0γ3γ4 + · · · + ω(l)iγ

0γ2l−1γ2l . (3.14)

The matrices iγ0γ2k−1γ2k are hermitian, with square one, therefore their eigenvalues are

plus or minus one. We will need the following:

Lemma 1 For every collection {εa}a=0,...,l, with ε2
a = 1, after performing a doubling of S

if necessary as in (2.11), there exists u satisfying γ0u = ε0u and

∀a ≥ 1 iγ0γ2a−1γ2au = εau .
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Remark 6 The result is wrong without the doubling in general, which can be seen by taking

n = 2, γ1 = iσ1, γ2 = iσ2, and γ0 = σ3, where the σi’s are the usual two-by-two Pauli

matrices.

Proof: The matrix iγ2l−1γ2l is hermitian, with square one, therefore its eigenvalues are

plus or minus one. The matrix γ2l defines a bijection between the (+1)–eigenspace and

the (−1)–eigenspace, so that each of these spaces is non-empty. Let Xl denote the ε0εl–

eigenspace of iγ2l−1γ2l. For 0 ≤ µ ≤ 2l− 2 the matrices γµ commute with iγ2l−1γ2l, which

implies that Xl is invariant under their action. For l ≥ 3 we repeat this construction to

obtain a subspace Xl−1 ⊂ Xl on which iγ2l−3γ2l−2 = ε0εl−1. After l steps we obtain a

space X0 ⊂ X1 ⊂ . . . ⊂ Xl which is invariant under γ0. If there exists a spinor u in X0

such that γ0u = ε0u, the result immediately follows. Otherwise we double S as in (2.11),

we take û to be any non-zero element of X0, and we set u = (û, ε0û). 2

Let u be given by Lemma 1 with εa = −sgnω(a). We obtain

0 ≤ 〈u,Qu〉 =
(
m(0) − |ω(1)| − · · · − |ω(l)|

)
|u|2 ,

proving point 1:

m(0) ≥ |ω(1)| + · · · + |ω(l)| .

In particular m(0) is non-negative. Since conformal transformations of the sphere at infinity

induce Lorentz transformations of m(µ) we obtain that m(µ) is causal future directed, or

vanishes. Equality implies that the boundary integral in the Witten identity vanishes, and

the volume integral shows that u is an imaginary Killing spinor (on S) for the modified

connection (2.13).

If m(µ) is timelike we clearly also have

m ≥ |ω(1)| + · · · + |ω(l)| , (3.15)

where

m :=
√

|η(µ)(ν)m(µ)m(ν)| ,

with η(µ)(ν) = diag(−1,+1, . . . ,+1), and the ω(i)’s in (3.15) are the angular momenta in a

Lorentz frame in which m(µ) is aligned along the time axis.

Still assuming timelikeness of M := (m(µ)), and choosing an ON frame in which M is

aligned along e(0), we now drop the condition (3.12) and assume that n = 3. We retain

(3.13), and make a rotation in the {e1, e2} plane so that c(2) = 0. Since the hermitian

matrices γ0γ1 and iγ0γ1γ2 commute, and square to one, we can choose u1 such that

|u1|2 = 1 and, replacing γ1 by −γ1 and γ2 by −γ2 if necessary,

iγ0γ1γ2u1 = u1 , γ0γ1u1 = u1 .

Set

u2 := γ0γ3u1 , u3 := γ0γ2u1 , u4 := γ0γ3u3 = −γ3γ2u1 . (3.16)

– 12 –
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From the Clifford relations one easily finds that




Qu1

Qu2

Qu3

Qu4


=




m + (c(1) + ω(1)) c(3) 0 0

c(3) m − (c(1) + ω(1)) 0 0

0 0 m + (−c(1) + ω(1)) c(3)

0 0 c(3) m − (−c(1) + ω(1))







u1

u2

u3

u4




One can further check that the ui’s form an ON basis as follows: u1 is orthogonal to u2

because both are eigenvectors of the hermitian matrix iγ0γ1γ2 with different eigenvalues.

(This can be verified by inspecting the sign in front of ω(1) in the matrix above.) For

the same reason u1 is orthogonal to u4, and u2 is orthogonal to u3. It remains to justify

orthogonality of the elements of the pair (u1, u3), similarly for (u2, u4). These follow from

the fact that the first spinor in each of those pairs is an eigenvector of γ0γ1 with an

eigenvalue different from the second one in the pair.12

Thus, the ui’s form an ON basis of Vect{ui}, so that the positivity properties of Q,

when restricted to this subspace, can be read off by calculating the eigenvalues of the

matrix above. These are easily found to be

m ±
√

(c(1) ± ω(1))2 + c2
(3) .

In particular we have rederived the property that Q is non-negative if and only if Maerten’s

inequality (3.2) holds. Furthermore, there will be at least two linearly independent imag-

inary Killing spinors if and only if the kernel of Q is at least two-dimensional. Under the

current hypotheses, and assuming an irreducible representation of the Clifford algebra, this

will happen if and only if

c(1)ω(1) = 0 ⇐⇒ J(i)(j)c
j = 0 ⇐⇒ ~j × ~c = 0 . (3.17)

We now return to general dimension, also dropping the assumption that m(µ) is time-

like. We use spinors obtained by the “doubling” technique as in (2.11); it then follows that

the matrix Q has the following block structure:

Q =




m(0) + iγkm(k) −γkc(k) +
i

2
J(k)(l)γ

kγl

︸ ︷︷ ︸
=:B

γkc(k) + i
2J(k)(l)γ

kγl m(0) − iγkm(k)


 (3.18)

(Positivity of Q when restricted to spinors of the form (u, 0) gives immediately that m(µ)

is causal future pointing, which we already know.)

Suppose that m(µ) is null, then there exists a (1
2 dim S)–dimensional space of u ∈ S

such that (m(0) + iγkm(k))u = 0. Likewise there exists a (1
2 dimS)–dimensional space of

v ∈ S such that (m(0) − iγkm(k))v = 0. Applying Q to a pair (u, λv), where λ ∈ C, with

such an u and v, we obtain

0 ≤ 〈(u, λv), Q(u, λv)〉 = 2<
(
〈u, λBv〉

)
.

12If one uses a space of spinors which carries an irreducible representation of the Clifford algebra, than

the above matrix describes Q completely. Otherwise one can, using descending induction, find an ON basis

in which Q is block-diagonal, with blocks as above.
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Since λ is arbitrary we conclude that 〈(u, v), Q(u, v)〉 = 0. Thus, the space of pairs (u, v)

which lead to a zero Hamiltonian charge H equals at least 1
2 dim S + 1

2 dim S = dim S.

Witten’s identity shows that each such u leads to an imaginary ∇-Killing spinor of (S, g,K),

section of S ⊕ S. This proves point 2.

Suppose, next, that m(µ) is timelike, and let us use a conformal frame in which

m(k) = 0. Using a spinor of the form (u, iu) one obtains instead

0 ≤ 〈(u, iu), Q(u, iu)〉 = 2<
(
〈u, (m(0) + iB)u〉

)
= 2〈u, (m(0) − iγkc(k))u〉

for all u, proving (3.10).

To prove point 4, suppose that m(0) vanishes, then m(k) = 0 by causality of m(µ),

further J(k)(`) vanishes by (3.8). Applying (3.18) to spinors of the form (u,±v), positivity

of Q implies c(k) = 0. Thus Q vanishes, which implies that the space of Killing spinors has

maximal dimension. One concludes that the space-time metric is Einstein, with vanishing

Weyl tensor, along S by the calculations in [1, section 4], which are done there for n = 3,

but remain valid for larger values of n.

In order to establish our remaining claims, we describe now an attempt to obtain a

simple form of Q in higher dimensions. While part of the calculation that follows can be

done in any dimension, we have only been able to carry it out completely in dimensions

4 + 1 and 5 + 1. We assume that m(k) is timelike, and we use an ON frame adapted to

m(k) in which (3.14) holds. In each plane Vect{e2j−1, e2j} we further make a rotation so

that c(2j) = 0. Let l be such that 2l ≤ n ≤ 2l + 1, for 1 ≤ j ≤ l set

Bj := iγ0γ2j−1γ2j , Aj = γ0γ2j−1 ,

then the Ai’s and Bi’s are hermitian, with square one, and satisfy the commutation relations

BiBj = BjBi , BiAj =

{
−AjBi, i 6= j;

AjBi, i = j,
, AiAj =

{
−AjAi, i 6= j;

AjAi, i = j.
(3.19)

Changing some of the γk’s to −γk’s if necessary, we can find a spinor u such that

∀i Biu = u .

Setting

ui := Aiu ,

one easily obtains the Bjui’s using (3.19):

Bjui =

{
−ui, i 6= j;

ui, i = j.

For n = 6 we can enlarge Vect{u0 := u, u1, u2, u3} to a space which is invariant under
the action of the Ai’s by adding, to the generating family {uµ}, the spinors u4 := A1A2u,
u5 := A1A3u, u6 := A2A3u, and u7 := A1A2A3u. It is then easy to work out the matrix
of Q in that basis (by considerations similar to the ones after (3.16) one checks that the
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uµ’s form an orthonormal family); we only report the result for ω(3) = 0; for typesetting
reasons we write bi for ω(i) and ai for c(2i−1):




m+b1+b2 a1 a2 a3 0 0 0 0

a1 m+b1 − b2 0 0 −a2 −a3 0 0

a2 0 m − b1+b2 0 a1 0 −a3 0

a3 0 0 m − b1 − b2 0 a1 a2 0

0 −a2 a1 0 m − b1 − b2 0 0 a3

0 −a3 0 a1 0 m − b1+b2 0 −a2

0 0 −a3 a2 0 0 m+b1 − b2 a1

0 0 0 0 a3 −a2 a1 m+b1+b2




One can use Maple or Mathematica to compute the eigenvalues of Q without assuming

ω(3) = 0, but this does not lead to useful expressions. However, suppose that n = 5; after

embedding the five-dimensional Clifford algebra into a six dimensional one, this form of a

general Q holds in the basis above. A Maple calculation shows then that the eigenvalues

of Q on this subspace all have multiplicity two, and are equal to

m ±
√

c2
(1) + c2

(3) + c2
(5) + ω2

(1) + ω2
(2) ± 2

√
(ω(1)c(1))2 + (ω(2)c(3))2 + (ω(1)ω(2))2 .

This gives (3.11).

Specialising further to c(5) = 0, a similar argument gives the inequality for n = 4,

proving point 6; a further specialisation leads to point 7. 2

3.1 Impossibility of null energy-momentum when n = 3

Under the hypotheses of Theorem 1, equality in (3.2) leads to the existence of imaginary

∇-Killing spinors on S. We have the following result, which does not assume a spherical

conformal boundary:

Theorem 3 Let dimS = 3, and suppose that (S, g,K) admits a non-trivial imaginary

Killing spinor for the connection (2.13). Then:

1. The Killing development of (S, g,K) admits an imaginary Killing spinor.

2. If there are two linearly independent such spinors on S, then the Killing development

of (S, g,K) is vacuum and has vanishing Weyl tensor.

Remark 7 In higher dimensions, the minimal number of Killing spinors which enforces

the vanishing of the Weyl tensor does not appear to be known. For example, consider a five-

dimensional Lorentzian Einstein-Sasaki manifold (all regular types can be constructed as

S1-bundles over Kähler-Einstein manifolds with negative scalar curvature, see [13 – 15]). A

Lorentzian Einstein-Sasaki space is not conformally flat and has (if it is simply connected)
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at least two linearly independent imaginary Killing spinors.13 In those examples we can

choose dimS = 4, leading to dimension four of the space of doubled imaginary Killing

spinors in point 2 of Theorem 1. Restricting to an irreducible sub-representation of the

Clifford algebra will presumably lead to a two-dimensional space, so that our constraints on

a null m(µ) do not exclude such non-trivial geometries. In fact, five-dimensional examples

with a two-dimensional space of imaginary Killing spinors can be found within the family

described in section 4.4, with a toroidal Scri; but note that these do not have a null m(µ).

Proof of Theorem 3: For point 1, we need to show that existence of space imaginary

Killing spinors for (2.13), that is spinors satisfying the following:

∇̂Xψ ≡ DXψ +
1

2
K(X) · γ0ψ + i

√
−Λ

2n(n − 1)
X · ψ = 0 , X ∈ TS , (3.20)

necessarily implies that of space-time imaginary Killing spinors in the Killing development

of (S, g,K).

We will prove the result using Dirac spinors on S, and especially their decomposition

into two component spinors, which simplifies the calculations. We use Greek indices for

space-time, preserving Latin indices for some of the lower dimensional situations which

follow; two-component spinor indices will be capital Latin indices as usual (see [27] for

further two-spinor conventions; note, however, the opposite signature of the metric here).

A space-time imaginary Killing spinor ψ can then be represented by a pair of spinor

fields (αA, βA′) satisfying the following coupled system of equations (compare [28, sec-

tion 2]):

∇AA′αB = bεABβA′ ,

∇AA′βB′ = bεA′B′αA , (3.21)

where b is a constant (not to be confused with the background metric of section 2), which

without loss of generality may be assumed real, and is then related to the cosmological

constant by Λ = −6b2.

Saturation of (3.2) implies that the data (S, g,K) admits a spinor field ψ satisfying

the projection into S of (3.21), say

Πα
γ Sα = 0, (3.22)

where Πα
γ is the tensor projecting tangentially to S and Sα stands for:

Sα :=

(
∇AA′αB − bεABβA′

∇AA′βB′ − bεA′B′αA

)
. (3.23)

Given a solution (αA, βA′) of (3.21), another solution is provided by (βA, αA′). The

two solutions are linearly independent unless αA and βA are proportional, say αA = fβA

for some function f . In this case, it follows from (3.21) that f is a complex constant, of

13We are grateful to Helga Baum for those remarks.

– 16 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
4

modulus one, and it can then be absorbed into a redefinition of βA′ . Thus, given a solution

of (3.21), we necessarily have at least a two-dimensional space of solutions unless we have

a solution of

∇AA′oB = bεABoA′ . (3.24)

For reasons which will appear, we shall call this the null case, while a solution of (3.21)

not of this form we call the non-null case.

Assuming that the full (as opposed to (3.22)) system (3.21) holds, by commuting

derivatives one finds

ψABCDαD = 0 = ψA′B′C′D′βD′

φABA′B′αB = 0 = φABA′B′βB′

where ψABCD is the Weyl spinor, the spinor representing the Weyl tensor, and φABA′B′ is

the Ricci spinor, representing the trace-free part of the Ricci tensor. In the non-null case,

when αA and βA are linearly independent, it follows from this that the Weyl and trace-free

Ricci tensors both vanish and the space-time is locally anti-de Sitter.

For non-trivial examples, therefore, we need to be in the null case. From (3.24) by

differentiating again we obtain

ψABCDoD = 0 = φABA′B′oB ,

so that

ψABCD = ΨoAoBoCoD , φABA′B′ = ΦoAoBoA′oB′ ,

for complex functions Ψ and Φ.

Even in the null case, if there are two linearly-independent such solutions, we shall

again have, locally, anti-de Sitter space (since ψABCD and φABA′B′ cannot take this form

for two independent spinors).

We return now to (3.22). Suppose first that we are in the non-null case. The vector

Xα constructed according to

Xα = αAαA′

+ β
A
βA′

, (3.25)

will give [1] ‘Killing Initial Data’ at S. In the Killing development of (S, g,K), Xα will be

a future-pointing, timelike Killing vector. From (3.25) we see, at S,

XαXα = −2V V , (3.26)

where

V = αAβ
A
.

By (3.22) we have

Πα
µ∇αV = Πα

µb(αAαA′ − βAβA′), (3.27)

which is real so that the imaginary part of V , say I, is necessarily a constant along S.

Recall that the Lie-derivative of a spinor field αA along a Killing vector Lα is defined

as

LLαA := Lµ∇µαA + ΦA
MαM (3.28)
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where the symmetric spinor ΦMN is defined by

∇µLν = ΦMNεM ′N ′ + ΦM ′N ′εMN , (3.29)

see e.g. [29, p. 40]. For Xα, from (3.25) and (3.22) we find, at S,

Πµ
α∇µXβ = 2bΠµ

α(α(MβB)εM ′B′ + α(M ′βB′)εMB),

so that, at S in the Killing development,

∇αXβ = 2b(α(AβB)εA′B′ + α(A′βB′)εAB) + nαvβ,

for some vector field vβ where nα is the (unit, timelike) normal to S. Symmetrising over

the indices α and β the left-hand-side vanishes, thus so does the right-hand-side, which

implies vα = 0. Thus the derivative at S of X is

∇αXβ = 2b(α(AβB)εA′B′ + α(A′βB′)εAB) , (3.30)

so that

ΦAB = 2bα(AβB) .

We impose

LXαA − 2ibIαA = 0 = LXβA′ − 2ibIβA′ (3.31)

in the Killing development, with αA and βA′ known on S and I the value of the (constant)

imaginary part of V at S. This determines the spinors throughout the Killing development.

Note also that now LXV = 0 in the Killing development, so that I equals =V throughout.

Furthermore, it follows that

LX(α(AβB)) = 0,

so that the Lie derivative along X of both sides of (3.30) vanishes, and therefore this

equation holds throughout the Killing development.

From (3.31), (3.30) and (3.28), we now have

XαSα = 0

with Sα as in (3.23), and from (3.31)

LXSα = 2ibISα.

Since Xα is transversal to S, this with (3.22) gives Sα = 0 at S, and therefore throughout

the Killing development. Now we have a solution of (3.21) in the Killing development,

which is therefore locally anti-de Sitter.

The null case is very similar: now we have a solution of

Πα
γ Sα = 0, (3.32)

where this time Sα stands for

Sα := ∇AA′oB − bεABoB′ . (3.33)
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We define the Killing vector by

Xα = oAoA′

. (3.34)

This is a future-pointing null vector (which is why we called this the null case). Since V is

now zero, (3.31) becomes

LXoA = 0

and we proceed as before.

For the derivative of X we find in this case

∇αXβ = boAoBεA′B′ + boA′oB′εAB . (3.35)

It follows that

XαSα = 0 (3.36)

at S, so that again Sα vanishes at S, but now LXSα = 0. We conclude as required that

Sα vanishes in the Killing development.

2

We shall say that (S, g,K) are smooth at infinity if the corresponding initial data for

the conformally rescaled metric are smooth at the conformal boundary at infinity. We have

the following corollary of Theorem 3:

Theorem 4 Under the hypotheses of Theorem 1 let dimS = 3, assume that the conformal

boundary at infinity Ṡ is a finite collection of spheres, with the metric satisfying the decay

conditions (2.1) in each of the asymptotic regions. Suppose moreover that the conformally

completed manifold S ∪ Ṡ is compact. If (S, g,K) is smooth at infinity then:

1. If (S, g,K) admits two linearly independent imaginary Killing spinors for the con-

nection (2.13) (which will be true if m(0) vanishes), then the initial data set arises

from a hypersurface in anti-de Sitter space-time.

2. m(µ) cannot be null.

3. Equality in (3.2) together with ~j × ~c = 0 (equivalently, ω(1)c(1) = 0) occurs if and

only if (S, g,K) can be obtained from a hypersurface in anti-de Sitter space-time.

Remark 8 The condition that (S, g,K) is smooth at infinity ensures equality of the Witten

boundary integral with Ashtekar’s formula for mass in terms of the Weyl tensor, and can

be weakened by working out the differentiability threshold needed for this equality.

Proof of Theorem 4: 1. By Theorem 3, or by point 4 of Theorem 2 if m(0) vanishes,

the Weyl and Ricci tensors vanish so that the Killing development is locally anti-de Sitter.

To prove that it is globally anti-de Sitter, it suffices (compare the arguments in [1, The-

orem 1.4]) to prove that it is geodesically complete14. This will be a consequence of the

following Lemma, provided that we can show that its hypotheses are satisfied:

14The proof of geodesic completeness of the Killing development of (S , g, K) in [1, Theorem 1.4] in-

vokes [30, Lemma 1.1]. However, that last lemma is incorrect. A counter-example is given by the domain

of outer communications of an extreme Reissner-Nordström black hole.
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Lemma 2 In space-time dimension n + 1 ≥ 2, consider a stationary Lorentzian metric

n+1g = − exp(µ)(dt + θidxi

︸︷︷︸
=:θ

)2 + h , (3.37)

on M := Rt × S, where h is a complete Riemannian metric on S, with Killing vector

X = ∂t satisfying

exp(µ) := −g(X,X) ≥ ε, |θ|h ≤ ε−1 , (3.38)

for some constant ε > 0. Then (M, n+1g) is geodesically complete.

Remark 9 This lemma together with the remaining arguments of the proof below shows

that, in all dimensions n ≥ 3, the vanishing of m(0) implies that the data set arises from the

anti-de Sitter space-time whenever the subspace of KIDs generated by those arising from

spinors contains a KID satisfying (3.38). We will show that this is necessarily true when

n = 3; to generalise our result to all dimensions one would need to justify (3.38) for n ≥ 4.

Proof: Let Γ(s) = (t(s), λ(s)) be an affinely parameterised maximally extended geodesic

in (M, n+1g), set

ε := n+1g(Γ̇, Γ̇) , p := n+1g(Γ̇,X) = −eµ(ṫ + θ(λ̇)) ,

thus ε and p are constant along Γ. Hence

h(λ̇, λ̇) = ε + e−µp2 ≤ C

for some constant C, and then

|ṫ| = |e−µp + θ(λ̇)| ≤ C ′ ,

for some other constant C ′. This implies that for any bounded interval I ⊂ R the closure

Γ(I) of the image Γ(I) ⊂ M is compact, and completeness of (M, n+1g) readily follows.2

Returning to the proof of Theorem 4, since the Weyl tensor vanishes, it follows e.g.

from [31] that in each of the asymptotic regions the Witten boundary term is identically

zero.15 Hence the matrix Q vanishes, and there is an imaginary Killing spinor χu at S for

every choice of imaginary b-Killing spinor ψu in each asymptotic end, with χu asymptoting

to zero in all the remaining ends. However, the number of imaginary Killing spinors is at

most equal to the number of imaginary b-Killing spinors in one end; it follows that S can

only have one asymptotic region.

We show that at least one of these imaginary Killing spinors leads to a Killing vector

which is timelike everywhere on S, with controlled µ and θ.

By (3.21), for any space-time Killing spinor, we have

∇α(αAβ
A − αA′βA′

) = 0, (3.39)

15In [31] the existence of a space-time with a global I is assumed, but the calculations there can be

repeated in our context.
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so that the imaginary part =V of V = αAβ
A

is constant. By choosing the Killing spinor

so that this is not zero at some point p on S we ensure that it is nonzero everywhere. But

the Killing vector X of (3.25) has norm

−4g(X,X) = 2V V ≥ 2(=V )2 > 0 , (3.40)

so that the Killing vector is everywhere timelike.

By Lemma 1 there exist spinors u±,0 such that, in any dimension n ≥ 3, for

a = 1, . . . , bn/2c,

|u±,0| = 1 , γ0u±,0 = u±,0 , iγ0γ2a−1γ2au±,0 = ±u±,0 .

The calculations in (3.5)-(3.6) show that the resulting b-KIDs lead, respectively, to the

following b-Killing vectors

∂t ±
( l∑

a=1

Ω(2a−1)(2a)

)
.

Adding, we conclude that the vector subspace of b-KIDs generated by imaginary b-Killing

spinors contains the vector ∂t.

Recall, next, that under the current conditions (S, g,K) has the maximal number of

imaginary Killing spinors. This implies that for every p ∈ S the map which to u assigns

the value χu(p), where χu is the solution of the Witten equation which asymptotes to ψu,

is a linear bijection. Now, the equation =V (p) = 0 defines an algebraic variety in the

space of spinors at p, the complement of which is open and dense. Therefore there exists

an open and dense set of u’s such that the corresponding χu’s will have =V (p) 6= 0, and

consequently will lead to timelike KIDs. (A KID is called timelike if the associated Killing

vector is.)

Set

r =
1

1 − |x| ,

where x is a coordinate as in (3.4). It follows from (3.5)-(3.6), together with the asymptotics

of solutions of the Witten equation, that for any ε > 0 we can choose u±,ε so that u±,ε

approaches u±,0 as ε tends to zero, and the corresponding KIDs (V±,ε, Y±,ε) are timelike,

with, for large r,

Vε := V+,ε + V−,ε = (1 + O(ε))r , |Y+,ε + Y−,ε︸ ︷︷ ︸
=:Yε

|g = O(ε)r . (3.41)

(Note that a sum of timelike future oriented KIDs is timelike.)

We consider the Killing development defined by (Vε, Yε), with ε sufficiently small so

that Vε ≥ 2r/3 and |Yε|g ≤ r/3: thus M is Rt × S with metric

4g = −V 2
ε dt2 + gij(dxi + Y i

ε dt)(dxj + Y j
ε dt) ,

with Killing vector X = ∂t. Letting

exp(µ) := −4g(X,X) = V 2
ε − |Yε|2g ≥ r2

3
, (3.42)
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we rewrite the space-time metric 4g as in (3.37),

4g = − exp(µ)(dt + θidxi)2 + h , (3.43)

so that

θi = −e−µgijY
j
ε . (3.44)

The asymptotics (2.1) of g, together with compactness of S ∪ Ṡ and the Hopf-Rinow

theorem imply completeness of (S, g). The Riemannian metric h is related to the initial

data metric g by the equation

hij = gij + exp(µ)θiθj ,

and, since the last term gives a non-negative contribution on any given vector, completeness

of (S, h) follows from that of (S, g).

The function µ is uniformly bounded away from zero by (3.39)-(3.40) and, for all ε

sufficiently small, it tends to infinity as one recedes to infinity on Sext by (3.41).

Finally, from (3.44) and (3.41), eµ/2|θ|g is uniformly bounded in (each of) the asymp-

totic regions, and the norm with respect to h is equivalent to that with respect to g (with

error terms of order ε2). Since S is a union of a compact set and one asymptotic end where

θ has already been shown to be controlled, a uniform bound on |θ|h follows. Point 1 follows

now from Lemma 2.

2: By point 2 of Theorem 2 there are at least two linearly independent Killing spinors,

and the result follows from point 1 of the current theorem.

3: As pointed out in the paragraph preceding (3.17) the hypotheses of point 1 are

satisfied. 2

3.2 Non-existence of black hole solutions saturating the equality, n = 3

Whatever the dimension n ≥ 3, there exist higher-genus Kottler black hole space-times

with zero Hamiltonian mass. One could naively think of those as saturating our positivity

bounds. However, it should be borne in mind that, for reasons already explained, those

solutions (as well as any solutions with the same asymptotic behavior) do not possess

imaginary Killing spinors, so our inequality does not apply.

We wish to show, under a natural supplementary assumption, non-existence of (3+1)-

dimensional black hole space-times (not necessarily vacuum), with spherical or toroidal

conformal infinity, saturating the angular momentum bound, except perhaps for Weyl-flat

solutions. To be precise, in addition to the hypotheses of the positivity theorem 1, we will

assume that S is the union of an asymptotically hyperbolic region Sext and of a compact

set, with non-empty smooth boundary. Moreover, we suppose that the space-time (M, 4g)

is not conformally flat.16 The hypothesis that the bound is saturated implies existence of a

Killing spinor, and thus also of the associated Killing vector which we call X, which must

16This hypothesis is used to prove that the horizon is degenerate. It can be replaced by the condition

that the imaginary Killing spinor extends smoothly across the event horizon, as then the associated Killing

vector will be causal, which again enforces degeneracy.
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be null by the analysis of section 3.1. The hypothesis of existence of a black hole will be

encoded in the assumption that the boundary of S, when moved by the flow of the Killing

vector field X, forms17 a null hypersurface H. So, assume for contradiction that a solution

satisfying the above exists. Then X is necessarily tangent to the generators of H, with zero

surface gravity since X is null everywhere. It follows from (3.35) that the solution is static

in the sense that X[ ∧ dX[ = 0, where X[ = 4g(X, ·). In vacuum this implies [32] that the

horizon has higher genus topology. But this contradicts [33, Theorem 4.1], showing that

vacuum solutions of the above kind are not possible. Finally, the reader will easily check

that the hypothesis that the space-time is vacuum plays no role in this argument, because

the energy-momentum tensor of the space-time metric is necessarily proportional to X⊗X,

and such a tensor does not affect those equations in [32] which are relevant to the problem

at hand, so that there are no non-vacuum black holes satisfying these conditions either.

3.3 Siklos waves

Theorem 4 shows that for nontrivial examples saturating Maerten’s inequality we need

there to be just a one-dimensional family of solutions of (3.24). Metrics with this property

will be briefly described in this section. We have seen in section 3.2 that, subject to some

natural restrictions, such examples do not include black hole solutions. In fact, we shall

see in section 3.4 that such examples are not possible at all in three space dimensions if we

further assume that I has spherical cross-sections and is “large enough”.

The “Lobatchevski plane waves” of Siklos [34], which we propose to call Siklos waves,

are precisely characterised by the existence of a nontrivial spinor satisfying (3.24). Siklos

shows that it is possible to introduce coordinates so that the metric may be written as

g =
1

2b2x2
(dx2 + dy2 − 2dudv − H(u, x, y)du2) . (3.45)

Here X = ∂/∂v. (The signature of (3.45) is reversed as compared to [34].) The Weyl and

Ricci spinors are

φABA′B′ = ΦoAoBoA′oB′ , (3.46)

ψABCD = ΨoAoBoCoD , (3.47)

where Φ and Ψ are given in terms of H by18

Φ = −b4x4(Hxx + Hyy − 2Hx/x) . (3.48)

Ψ = −b4x4(Hxx − Hyy − 2iHxy) , (3.49)

The cosmological constant is Λ = −6b2 (this is not the Λ of the Newman-Penrose formalism

which would be 24b2).

17Note that the level sets of u are null hypersurfaces generated by X, but with non-compact intersection

with S .
18The multiplicative factor 1/16 in the equation for Φ22 in [34, p. 254] should be 1/4.
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The Killing vector X Lie drags the Weyl spinor (since it is a symmetry) and the

Lie derivative defined by (3.28) commutes with contractions and tensor products, so that

from (3.47)

Xα∂αΨ = 0. (3.50)

If H is zero, then (3.45) is the metric of anti-de Sitter space with I at x = 0. A

variety of other choices for the function H also lead to anti-de Sitter space, in particular a

constant, say H = H0, as the coordinate transformation

dv → dV = dv +
1

2
H0du

demonstrates.

3.4 Rigidity in the n = 3 spherical case

In section 3.1 we have shown that a null m(µ) cannot occur. In this section we wish to show

that the remaining possibilities for equality in (3.2) only occur in anti-de Sitter space-time,

under the supplementary condition19 that the initial data set arises from a space-time with

a conformal completion at infinity which is “sufficiently large in time”. By this we mean

that the interval of the t–coordinate below has length at least π.

A (four-dimensional) space-time (M, 4g) is said to be asymptotically-anti-de Sitter if

it is smoothly conformal to a manifold M̃ with boundary ∂ M̃ ≡ I ≈ R × S2, with the

usual condition that the conformal factor Ω, relating the metrics as 4g = Ω−2 4g̃, vanishes

on I precisely at order one. It is further assumed that the restriction of 4g̃ to the conformal

boundary at infinity equals

h̊ijdxidxj = dθ2 + sin2 θdφ2 − dt2. (3.51)

It is then possible to introduce20 coordinates (R,xi) for i = 1, 2, 3 so that the space-time

metric 4g = g can be written in the form

g =
1

R2
(dR2 + hij(R,xk)dxidxj) , (3.52)

with

hij = h̊ij(x
k) + O(R2) . (3.53)

The metric (3.45) with 2b2 = 1 and H = 0 takes this form, though the metric of anti-de

Sitter space is more commonly written as

g = dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2) − cosh2 ψdt2, (3.54)

when the substitution R = e−ψ will cast it in the form of (3.52).

19This hypothesis can often be removed by using the Killing development. This is, unfortunately, not the

case for the problem at hand because of the zeros of the Killing vector at I.
20In this section, and only in this section, we use the convention that x0 = R; the reader should not

confuse this with a time-coordinate.
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Our aim now is to show that the metric of the Siklos wave (3.45) cannot be written

in the asymptotically-anti-de Sitter form (3.52) unless it is exactly anti-de Sitter. Our

technique will be, first to obtain an asymptotic form of the Killing vector X and then to

show that the equation (3.50) is incompatible with (3.52) unless Ψ = 0.

We suppose then that X is a Killing vector for the metric (3.52) and write it in the

form

X = A
∂

∂R
+ Bi ∂

∂xi
. (3.55)

The Killing equation may be written as

Xγ∂γgαβ + gαγ∂βXγ + gγβ∂αXγ = 0.

Substituting from (3.52) we obtain for the (00) component of this

R
∂A

∂R
− A = 0

so that

A = RV (xi) (3.56)

for some V (xi), to be found. For the (0i) components we find

∂A

∂xi
+ hij

∂Bj

∂R
= 0,

so that

Bj(R,xk) = Bj
0(x

k) + O(R2). (3.57)

Finally, for the (ij) components we find

LBhij = 2V hij − RV
∂

∂R
hij .

The leading term in this equation, with what we have already, requires

LB0 h̊ij = 2V h̊ij . (3.58)

Thus B0 is a conformal Killing vector on I, and our next task is to find these. We proceed

as before, by setting

Bi
0

∂

∂xi
= β

∂

∂t
+ Aa ∂

∂ya
(3.59)

where a = 2, 3 and (y2, y3) = (θ, φ). This is to be a conformal Killing vector of the

metric (3.51) which we write as

h̊ijdxidxj = ηabdyadyb − dt2.

The conformal Killing equation (3.58) may be written in the form

Bk
0∂kh̊ij + h̊ik∂jB

k
0 + h̊kj∂iB

k
0 = 2V h̊ij
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from which, as before, we obtain the system of equations

∂β

∂t
= V (3.60)

∂β

∂ya
= ηab

∂Ab

∂t
(3.61)

LAηab = 2V ηab. (3.62)

To solve these, we need to know some facts about conformal Killing vectors on S2 (which,

by (3.62), A = Aa∂a is). The general solution of (3.62) is of the form:

Aa = Za − ηab ∂α

∂yb
(3.63)

where Za is a Killing vector for η and α is a conformal scalar, by which we mean a solution

of the equation:

DaDbα = −αηab (3.64)

where Da is the Levi-Civita covariant derivative for η. Thus, from (3.62), V = α. Next, it

now follows from (3.61) that

∂

∂ya
(β +

∂α

∂t
) = ηab

∂Zb

∂t
.

Taking the divergence of this we find that

∂Za

∂t
= 0; β = β0 −

∂α

∂t
(3.65)

for some β0 independent of ya. Finally, integrating (3.60) over S2, and noting that α

integrates to zero because of the equation ∆α = −2α, shows that β0 is actually constant

and α satisfies
∂2α

∂t2
= −α (3.66)

which is readily solved.

We may write out solutions explicitly by regarding the S2 as the unit sphere in R
3 with

Cartesian coordinates X = (Xi), i = 1, 2, 3. Then α is linear in Xi and, taking account

of (3.66), may be written in the form

α = −(a ·X) cos t − (b · X) sin t (3.67)

in terms of a pair of constant vectors a and b. By (3.65) we obtain

β = β0 − (a ·X) sin t + (b ·X) cos t, (3.68)

while Z is a Killing vector, so that

Za ∂

∂ya
= MijX

i ∂

∂Xj
(3.69)
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for a constant, antisymmetric matrix Mij (where necessary, indices i, j can be raised or

lowered with δij).

We have found an asymptotic form for the most general Killing vector of (3.52). How-

ever, we are interested in null Killing vectors, so that by (3.55)

g(X,X) :=
1

R2
(A2 + hijB

iBj) = 0,

which implies in particular that

h̊ijB
i
0B

j
0 = 0, (3.70)

so that B0 is also null.

From (3.59) and (3.63) this is the condition

−β2 + ηab(Za − ∂aα)(Zb − ∂bα) = 0.

Substituting into this from (3.67), (3.68) and (3.69), we obtain a series of algebraic equa-

tions by equating to zero coefficients of 1, sin t, cos t and cos 2t. These are

|a|2 = |b|2; a · b = 0 (3.71)

then

β0ai + Mijbj = 0

−β0bi + Mijaj = 0

so that

Mij = ε(aibj − ajbi) (3.72)

for constant ε, and finally

−β2
0 + MikMjkX

iXj + |a|2 − (a ·X)2 − (b ·X)2 = 0 ,

which implies just

β0 = −ε|a|2 (3.73)

with ε2|a|2 = 1.

We have found the general form of any null Killing vector in any asymptotically adS

space-time, so that X of section 3.3 must have this form, in any Siklos wave which is

asymptotically adS. There are two families depending on the sign of ε and the six real

parameters (a,b) subject to (3.71). Replacing the Killing spinor by a multiple thereof if

necessary, we can without loss of generality assume |a| = 1. All choices are equivalent up

to rotation and the discrete symmetry t → t + π/2. We make the choices

a1 = b2 = ε = 1

with other terms zero, then with X = (sin θ cos φ, sin θ sin φ, cos θ) we obtain

α = − sin θ cos(φ − t) (3.74)
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and

B0 = (−1 + sin θ sin(φ − t))
∂

∂t
+ cos θ cos(φ − t)

∂

∂θ
(3.75)

+(1 − sin(φ − t) csc θ)
∂

∂φ
.

Now we have the Killing vector X, at least asymptotically, we need to solve (3.50). For

this we need the asymptotic form of Ψ compatible with (3.52). We recall some of the

conventions associated with conformal rescaling in asymptotically adS space-times. The

unphysical metric is

g̃αβ = R2gαβ

with R and gαβ as in (3.52). From (3.55) and (3.56), we see that the Killing vector X

extends to a smooth vector field on I, and we have

∇µXν =
2

R3
X̃[µ∂ν]R + O(R−2) , (3.76)

where X̃µ := g̃µνXν ; here and below O(Rk) refers to components in the coordinate system

(R,xi). From (3.30), where now b = 1/
√

2, and (3.47), the Weyl tensor W equals

W = A(dX ⊗ dX − (∗dX) ⊗ (∗dX)) + B(dX ⊗ (∗dX) + (∗dX) ⊗ dX) , (3.77)

where ∗ is the space-time Hodge-dual, while

Ψ = A − iB

and Ψ is as in (3.47) and (3.49). Let N = R∂R be a unit normal to the level sets of R.

Recall that the electric and magnetic Weyl tensors at a hypersurface with normal N

are defined as Eij := WiγjδN
γN δ and Bij := ∗WiγjδN

γN δ respectively, where W is the

Weyl tensor and ∗W is its dual. The rescaled electric Weyl tensor, finite on I (see [31,

Lemma 3.1] ) is, by equation (2.14) of [35] and by (3.76)-(3.77)

Ẽij = R−1WiγjδN
γN δ

= R−5
(
AX̃iX̃j + O(ΨR)

)
.

Similarly the rescaled magnetic part of the Weyl tensor, finite on I, is

B̃ij = R−1 ∗WiγjδN
γN δ

= R−5
(
BX̃iX̃j + O(ΨR)

)
.

It follows that limR→0 R−5Ψ exists, and

lim
R→0

Ẽij = MX̃iX̃j , (3.78)

where M = limR→0 R−5<Ψ. Up to a multiplicative factor, M is the integrand for the

asymptotically defined, Ashtekar-Magnon global charges [35, 36]. If M is zero on I then

all global charges are zero. M is bounded on I away from the zeroes of X, but could be

singular where X is zero.
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Now from (3.50)

Xα∂α(MR5) = 0 ,

so with X given by (3.55), (3.74) and (3.75), we need on I that

Bi
0

∂M

∂xi
− 5 sin θ cos(φ − t)M = 0. (3.79)

On the equator (3.79) can be integrated to give

M(t, θ = π/2, φ) = (1 − sin(φ − t))−5/2f(φ + t) , (3.80)

for some function f of φ + t. From (3.78) one then has

Ẽtt = (1 − sin(φ − t))−1/2f(φ + t) ,

so f vanishes if a smooth global I exists.

For cos θ 6= 0 introduce F by

M = (cos θ)−5F (t, θ, φ) (3.81)

then (3.79) becomes

(−1 + sin θ sin(φ − t))
∂F

∂t
+ cos θ cos(φ − t)

∂F

∂θ
+ (1 − sin(φ − t) csc θ)

∂F

∂φ
= 0.

i.e. F is constant on the integral curves of the vector field B0, which we need to consider.

We shall find that cos θ is either zero or asymptotic to zero along every integral curve,

and that the components of X are asymptotic to zero along every integral curve. From

the rate at which these quantities vanish, it will follow from (3.78) and (3.81) that, on the

curves with cos θ 6= 0, F vanishes on I, and so does M , while it will follow from (3.80) that

M is zero on the curves with cos θ = 0. Note that the Ashtekar-Magnon mass equals the

boundary term which arises in Witten’s positive energy argument by [31]. Hence, under the

hypotheses of Theorem 3.9, we can then conclude that the initial data set can be embedded

into anti-de Sitter space-time.

The integral curves of B0 satisfy the system of equations

dt

dλ
= (−1 + sin θ sin(φ − t)) (3.82)

dθ

dλ
= cos θ cos(φ − t) (3.83)

dφ

dλ
= (1 − sin(φ − t) csc θ) (3.84)

in terms of a real parameter λ along the curves.

Equating the right-hand-sides to zero, we see that the fixed points of B0 lie on the

curve Γ defined by θ = π/2, φ − t = 2kπ + π/2, for integer k, which is a helix on I.

We first investigate integral curves with constant θ. Any curve on which θ is constant

must, by (3.83), have cos θ or cos(φ − t) vanishing, but in the second case, by (3.82)
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and (3.84), we arrive again at cos θ = 0. Thus the only integral curves with θ constant

have θ = π/2. Going further with these, we find that φ + t must be constant on them.

Introduce γ by φ − t = 2γ + π/2 then we find an equation for γ which integrates to give

cot γ = 2(λ0 − λ).

for some constant λ0, and so

1 − sin(φ − t) = 2 sin2 γ = 2(1 + 4(λ0 − λ)2)−1.

Now suppose we have an integral curve with a point where cos θ 6= 0. It is straightfor-

ward to check that the following are constants along the integral curve:

a :=
sin θ sin φ − cos t

cos θ
(3.85)

b :=
sin θ cos φ + sin t

cos θ
(3.86)

and then that

d

dλ

(
sin t

cos θ

)
= a

d

dλ

(
cos t

cos θ

)
= b,

so that

sin t

cos θ
= aλ + c (3.87)

cos t

cos θ
= bλ + d, (3.88)

for constants c and d. Squaring and adding these we find

sec2 θ = (a2 + b2)λ2 + 2(ac + bd)λ + (c2 + d2). (3.89)

If a2 + b2 = 0 then θ would be constant, but we have just seen that the only integral curves

with constant θ have cos θ = 0 at all points. Thus a2 + b2 6= 0, but now as λ goes to plus

or minus infinity, sec θ is unbounded, so that θ must tend to π/2 on each integral curve on

which cos θ is not always zero. More precisely, (3.89) shows that

θ − π/2 ∼ λ−1 ⇐⇒ cos θ ∼ λ−1

at infinity, in the sense that there exists a constant C such that C−1λ−1 ≤ cos θ ≤ Cλ−1.

We now look at the components of B0 from (3.75) along the integral curve. From (3.85),

(3.86), (3.87) and (3.88) we have

tan θ cos φ = −aλ + (b − c); tan θ sinφ = bλ + (a + d)

so that

sin θ sin(φ − t) − 1 = (ad − bc) cos2 θ ∼ λ−2 . (3.90)
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To justify “∼”, we note that the cofficient of λ−2 cannot be zero as

ad − bc =
a cos t − b sin t

cos θ

and if this were zero then t would be constant along the integral curve, which is inconsistent

with (3.82). In the same manner we find that

cos θ cos(φ − t) ∼ λ−2 ,

sin(φ − t)

sin θ
− 1 ∼ λ−2 ,

so that, by (3.75), all components of B0 vanish at the rate O(λ−2) and no faster along

the integral curve. Putting this with (3.89) we find that (cos θ)−5X ⊗X is O(λ) along the

integral curve and therefore F , which is constant along the integral curve, must vanish.

Thus F vanishes on I, therefore so does M and all the asymptotically-defined momenta.

4. Ricci-flat conformal infinity

So far we have been mostly assuming that Scri has spherical cross-sections. In this sec-

tion we collect some results about alternatives. In section 4.1 we will prove an analogue

of the angular-momentum inequality (3.2) for toroidal Scris; section 4.2 discusses some

other possibilities. In the remaining two sections we review some examples saturating the

inequality.

4.1 Toroidal infinity

We suppose that conformal infinity has toroidal topology

T
n−1 := S1 × . . . × S1

with a flat metric ȟ. The space-time metric

n+1b = −r2

`2
dt2 +

`2

r2
dr2 + r2ȟ , (4.1)

where ` is related to the cosmological constant Λ by the formula 2Λ`2 = −n(n − 1),

provides a static vacuum example satisfying all the conditions of the positivity theorem.

The slices t = const. have complete induced metric, with one conformally compactifiable

end where r → ∞, as well as a “cuspidal end” where r → 0. The toroidal Kottler black

holes [18] also belong to this class. Note that the coordinate r in (4.1) can be rescaled by

a constant factor, a subsequent redefinition of ȟ and of t preserves then the general form

of the metric. A natural way of getting rid of this freedom is to assume that the volume

of (Tn−1, ȟ) equals 16π. Alternatively, one can assume that this volume equals one, and

remove the normalisation constant 1/16π in front of (2.2).

We consider the following, trivial spin structure over T
n−1: Let S

′′ be a product

Hermitian bundle of spinors over T
n−1, with a representation of the Clifford algebra of

(Tn−1, ȟ) via anti-hermitian matrices. On T
n−1 we use manifestly flat local coordinates xa,
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a = 1, . . . , n − 1, ranging from 0 to 2π, and we choose a spin frame so that all connection

coefficients vanish, with the Clifford action of parallel vectors represented by constant

matrices.

The Witten-type proof of the positive energy theorem requires imaginary Killing

spinors in the asymptotic region Sext “near conformal infinity”; in the current case this is

the region r ≥ r0 for some large r0, with the initial data metric g approaching the space-

part of (4.1) as in (2.1), and with Kij approaching K̊ij = 0 as required there. To construct

those spinors we first consider S
′ = S

′′⊕S
′′, the direct sum of two copies of S

′′, equipped

with the direct-sum sesquilinear product 〈·, ·〉⊕:

〈(ψ1, ψ2), (ϕ1, ϕ2)〉⊕ := 〈ψ1, ϕ1〉 + 〈ψ2, ϕ2〉 . (4.2)

For X ∈ TT
n−1 we let X· denote the Clifford action of X and, similarly to (2.11), for

ψ1, ψ2 ∈ S
′′ we set

γ0(ψ1, ψ2) := (ψ2, ψ1) , (4.3a)

X · (ψ1, ψ2) := (X · ψ1,−X · ψ2) , (4.3b)

DX(ψ1, ψ2) := (DXψ1,DXψ2) . (4.3c)

One checks that (4.3c) defines a representation of the Clifford algebra of (Tn−1, ȟ) on S
′.

Further

(γ0)2 = 1 , (4.4a)

∀X ∈ TT
n−1 γ0X · = −X · γ0 , (4.4b)

(γ0)† = γ0 , (4.4c)

Dγ0 = γ0D , (4.4d)

Next, it is convenient to pass to yet another direct sum bundle S = S
′⊕S

′, equipped

with the direct-sum Hermitian product which will be denoted by 〈·, ·〉⊕⊕. We define, for

ψ1, ψ2 ∈ S
′, X ∈ T n−1M and a ∈ C,

γn(ψ1, ψ2) := (−ψ2, ψ1) , (4.5a)

(X · +aγ0)(ψ1, ψ2) := ((X · +aγ0)ψ1,−(X · +aγ0)ψ2) , (4.5b)

DX(ψ1, ψ2) := (DXψ1,DXψ2) . (4.5c)

This provides one more representation21 of the Clifford algebra of (Tn−1, ȟ), on S, with

moreover

(γn)2 = −1 , (4.6a)

∀X ∈ TT
n−1 , a ∈ C γn(X · +aγ0) = −(X · +aγ0)γn , (4.6b)

(γn)† = −γn , (4.6c)

Dγn = γnD . (4.6d)

21This representation will not be irreducible, but this is irrelevant for the positivity argument. In fact,

already the doubling (4.3c) will lead to a reducible representation of the (Tn−1, ȟ)–Clifford algebra extended

by adding γ0 when n is odd.
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We assume that on Sext the background metric b takes the form

b = (dxn)2 + e4µxn

ȟ ; (4.7)

this corresponds to the space-part of the metric (4.1) when µ = 1/(2`). The conformal

boundary at infinity is constructed by multiplying by e−4µxn

, and replacing xn by y =

e−2µxn

; the boundary is then the set {y = 0}. We note that (4.7) is a complete space-form

metric.

Any vector Y ∈ TSext can be written in form Y = Y n∂n +Xaea, where ea = e−2µxn

fa,

and where the fa’s form a ȟ–ON basis. Note that {∂n, ea} form a b–ON basis. We define

the b–Clifford action of Y on S as

Y · = Y nγn + Xafa · .

Let the co-frame θi = (dxn, θa) be dual to (∂n, ea), then the only non-vanishing con-

nection coefficients are −ωanb = ωnab = −2µȟab. One then has

D̊k = ∂k − 1

4
ωijke

i · ej · =

{
∂n, k = n;

∂b + µγneb·, k = b.

It follows (compare [37]) that for any χ ∈ S
′, with constant entries, the spinor field

ψ :=
eµxn

√
2

(iχ, χ) , (4.8)

defined over Sext, is an imaginary Killing spinor for b; by definition,

D̊Y ψ = −µiY · ψ , (4.9)

where D̊ denotes the covariant derivative operator of b. One also has

∀ Z ∈ TSext ∇̊Zψ̂ :=
(
D̊Z − 1

2
K̊i

jZiej · γ0
)
ψ̂ = −µiZ · ψ̂ , (4.10)

because the background extrinsic curvature K̊ij of the slices t = 0 for the associated space-

time background metric n+1b vanishes.

Let K denote the space of imaginary Killing spinors ψ ∈ ΓS constructed so far. As

already mentioned in section 2, to any element of K one can associate a KID of the back-

ground initial data (b, 0) as follows

K 3 ψ →
(
V = 〈ψ,ψ〉⊕⊕ , Y = 〈ψ, γn · γ0ψ〉⊕⊕∂n +

∑

a

〈ψ, fa · γ0ψ〉⊕⊕ ea

)
. (4.11)
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Chasing through the definitions we find

V = 〈ψ,ψ〉⊕⊕ = e2µxn〈χ, χ︸︷︷︸
=(χ1,χ2)

〉⊕

= e2µxn
(
〈χ1, χ1〉 + 〈χ2, χ2〉

)
, (4.12)

Y = 〈ψ, γn · γ0ψ〉⊕⊕︸ ︷︷ ︸
=0

∂n +
∑

a

〈ψ, fa · γ0ψ〉⊕⊕ ea

= e2µxn
∑

a

〈χ, fa · γ0χ〉⊕ ea =
∑

a

(〈χ1, fa · χ2〉 − 〈χ2, fa · χ1〉)fa

= 2
∑

a

<
(
〈χ1, fa · χ2〉

)
fa . (4.13)

Let m denote the value of H corresponding to the background-KID V = e2µxn
/`,

Y = 0. This last KID corresponds to the Killing vector ∂t of the metric (4.1), so that

m has the interpretation as energy. Similarly let j(b) be the value of H corresponding to

fb; thus V = 0 and Y a∂a = fb. Clearly each j(b) has a natural interpretation of angular

momentum.

Under the hypotheses of Theorem 1, one concludes that the composition of (4.11) with

the Hamiltonian map (2.2) defines a positive Hermitian form on K. We have

H(V, Y ) = H
(
(〈χ1, χ1〉 + 〈χ2, χ2〉)(e2µxn

, 0) + 2
∑

a

<(〈χ1, fa · χ2〉)(0, fa)
)

= (〈χ1, χ1〉 + 〈χ2, χ2〉)`m + 2
∑

a

<(〈χ1, fa · χ2〉)j(a) ≥ 0 ,

for all constant spinors (χ1, χ2). This is possible if and only if22

m ≥
√

− 2Λ

n(n − 1)
|~j| , |~j| :=

√
j2
(1) + · · · + j2

(n) . (4.14)

We have thus derived the toroidal equivalent of Maerten’s inequality (3.2); we emphasise

the spin-structure compatibility condition (2.7).

In space-dimension three (4.14) can be viewed as the special case ~c = 0 of (3.2), but

the justification of this appears to require the work above.

Let ja be the angular momentum associated with the Killing vector ∂a. It should be

clear that with this definition the inequality in (4.14) remains valid if |~j| is taken to be√
ȟabjajb, where ȟab is the inverse matrix to ȟab := ȟ(∂a, ∂b).

4.2 General conformal infinities with parallel spinors

We now consider a metric (4.1), without assuming that ȟ is flat: instead we assume that the

manifold (n−1M, ȟ) carries a non-trivial covariantly constant spinor χ, section of a spinor

bundle S
′′. (Such manifolds are necessarily Ricci flat, compare [38 – 42].) The construction

22Indeed, if |~j| = 0 the inequality (4.14) is clear. Otherwise choose χ2 =
P

a
j(a)fa · χ1/| ~J | to conclude

that (4.14) is necessary. The proof of sufficiency is left to the reader.
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of the background imaginary Killing spinors of the previous section carries over with only

trivial modifications to such a setting. Under the hypotheses of Theorem 1 we then obtain

a positive definite quadratic functional on the space of covariantly constant spinors of

(n−1M, ȟ). It appears that an optimal form of the resulting constraints has to be analysed

case-by-case. Here we only note the following: For every ȟ–parallel χ the norm squared

〈χ, χ〉 is constant over n−1M . It follows that we can normalise χ to obtain two KIDs as

in (4.11) with χ2 = ±χ1 = χ in (4.12)-(4.13), and with time component of the associated

KIDs equal to one. The positivity of H for both the plus and minus signs then gives

`m ≥ |j| ,

where j is the angular momentum associated with the b-Killing vector Y corresponding

to χ, and ` has been defined in (3.9). We thus obtain positivity of m, together with an

upper bound on |j| in terms of m. The result is optimal if the space of covariantly constant

spinors of (n−1M, ȟ) is one-dimensional. Otherwise we clearly also have the non-optimal

inequality

`m ≥ sup
ψ

|j(Xψ)| ,

where the supremum is taken over the covariantly Killing spinors ψ normalised as described

above, and j(Xψ) denotes the angular momentum along the Killing vector Xψ associated

to ψ.

4.3 Nonrigidity in the toroidal case for n = 3

By section 3.1 equality in (4.14) leads, locally, to space-forms or to Siklos waves. In order

to see that those are compatible with the toroidal topology at infinity note, first, that the

metric (3.45) with 2b2 = 1 and H = 0 gives anti-de Sitter, by introducing t = (u + v)/
√

2

and z = (v − u)/
√

2:

g =
1

x2
(dx2 + dy2 + dz2 − dt2) .

This metric covers part of anti-de Sitter space-time. However, we now impose a periodic

identification in y and in z. Then this is a metric with a I which is topologically T
2 × R

at x = 0 and a ‘hyperbolic cusp’ as x → ∞, as in (4.1). We can retain these asymptotics

with a nonzero H(u, x, y) which is suitably periodic in u and y and decays appropriately

in x as x goes to zero. A simple class of examples may be generated as follows: take

H = xf ′(x) − f(x),

then from (3.48) we find

Φ = −x6

4

(
f ′′

x

)′
. (4.15)

while from (3.49)

Ψ = −x4

4
(xf ′′)′ (4.16)
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For the dominant energy condition (Tabv
avb ≥ 0 for timelike va) to hold we need Φ to be

non-negative so set Φ = x6

4 ρ(x) for a non-negative function ρ. For simplicity, we assume

that ρ has compact support, and then we solve for f ′′ as

f ′′(x) = x

∫ ∞

x
ρ(y)dy. (4.17)

Suppose ρ is supported in 0 < a < x < b < ∞, then so is Φ (and so also is the energy-

momentum tensor). For x < a, we find f ′′ = mx with m =
∫ b
a ρdx and then Ψ = −mx5/2,

which is the rate of decay we found we required in (3.4). Thus I exists at x = 0 with this

H, as with H = 0. Letting t and z be as at the beginning of this section, we require the

level sets of t to be spacelike. This is equivalent to

H < 2 , (4.18)

which can be arranged by the choice of f(0) for any ρ as above. We note the following

formulae for the metric and second fundamental form of the hypersurface S := {t = 0}

gijdxidxj = x−2
{
dx2 + dy2 +

(
1 − H

2

)
dz2

}
,

√
det gij = x−3

√
1 − H

2
, (4.19)

gtt = −x−2
(
1 +

H

2

)
, gzt = x−2 H

2
, (4.20)

Kijdxidxj = − H ′

x
√

4 − 2H
dxdz , (4.21)

|K|2g =
(xH ′)2

2(2 − H)2
, (4.22)

which shows that K satisfies the decay conditions needed for a well-defined mass (recall

that ρ vanishes near x = 0). One can check that

H(x) = H(0) +

∫ x

0

y3

3
ρ(y)dy +

x3

3

∫ ∞

x
ρ(y)dy ,

so that H is a non-decreasing function of x for non-negative ρ and, subsequently, that

(4.18) will hold if and only if

3H(0) +

∫ ∞

0
x3ρ(x)dx < 6 . (4.23)

Assuming this condition, and a compact support of ρ in (0,∞), the hypersurface

S = {t = 0} with the induced fields provides an example of non-trivial initial data set

which saturates the inequality (4.14), and satisfies all the hypotheses of the positive energy

theorem in section 2.

For x > b, Ψ = 0 and the space-time is locally anti-de Sitter. For example, if we choose

H(0) = 0 = f(0) (note that the choice of f ′(0) is irrelevant as it does not change H) then

for x > b, H is constant and equal to H∞ = (
∫ b
a x3ρdx)/3. The metric is

g =
1

x2
(dx2 + dy2 + dz2 − dt2 − H∞

2
(dt − dz)2)
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but the coordinate transformation

dz̃ = dz(1 − H∞
4

) +
H∞
4

dt

dt̃ = −H∞
4

dz + (1 +
H∞
4

)dt

has the effect of setting H∞ to zero.

Another interesting example is f = C sinhx sin y sin u, where C is a constant. Now

H = xfx − f gives vacuum. It satisfies the asymptotic conditions, with Ψ = O(x5) for

small x, but because the solution is exponentially large for large x the existence of globally

regular spacelike surfaces is not clear. This leads naturally to the question of existence of

non-trivial vacuum initial data sets saturating the angular momentum inequality (4.14).

Recall that no such black hole solutions exist by the results in section 3.2, but the general

result is not known.

4.4 Higher dimensional examples

Gibbons and Ruback [16] have presented some metrics which are generalisations of the

Siklos metrics to higher dimensions (compare [13, p. 14]). In space dimension n (so space-

time dimension (n + 1)), the metrics can be written in the form

gGR =
1

2b2x2
(dx2 + habdyadyb − 2dudv − H(u, x, ya)du2) . (4.24)

where h = habdyadyb is a Ricci-flat, Riemannian metric on an (n−2)-dimensional manifold
n−2M (compare (3.45)). From now on we set 2b2 = 1. To analyse the imaginary Killing

spinor equation we use the frame

θ0 =
du

x
, θ1 =

1

x
(dv +

H

2
du) , θ2 =

dx

x
, θa =

1

x
θ̌a ,

where θ̌a is an ON-frame for (n−2M,h). A somewhat lengthy calculation shows that if

ψh is a covariantly constant spinor for h then, in a basis of the spinor bundle where the

γ–matrices are independent of x, u and v, the spinor field ψ = x−1/2ψh is an imaginary

Killing spinor for (4.24) and, in fact:

Proposition 1 The metrics (4.24) admit non-trivial imaginary Killing spinors if and only

if (n−2M,h) admits non-zero covariantly constant spinors.

So, when such spinors exist, the volume integral in the Witten identity vanishes, there-

fore so does the boundary integral. Assuming the asymptotic conditions permit the ex-

istence of I, the metrics (4.24) will therefore saturate the n-dimensional version of our

bounds.

The Ricci tensor RicGR for gGR may be written

RicGR = −ngGR + 2ΦX ⊗ X

where X = ∂/∂v and Φ is the function

Φ = −x4

4

(
∂2H

∂x2
− (n − 1)

x

∂H

∂x
+ ∆hH

)
,
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where ∆h is the Laplacian for h. The dominant energy condition again requires Φ to

be positive and as in the three dimensional case we can readily find solutions with H

independent of u and ya: set Φ = 1
8xn+3ρ(x) then solve

(x1−nH ′(x))′ = −ρ,

where prime denotes d/dx, to find

H ′(x) = xn−1

∫ ∞

x
ρ(s)ds, (4.25)

(compare (4.17)). Now if we assume that n−2M is compact and that u is periodic, we

obtain a solution with a I located at x = 0, whose cross-sections are n−2M × S1. The

discussion around (4.18) goes through as before: Kijdxidxj is as in (4.21), where now

xi = (x, ya, z), and (4.19) is replaced by

gijdxidxj = x−2
{

dx2 + habdyadyb +
(
1 − H

2

)
dz2

}
.

Therefore, under (4.18), and assuming that ρ is non-negative and compactly supported,

these solutions will satisfy the global and asymptotic conditions of the positivity theorem.

For the counterpart of (3.78) we obtain, with conventions as above and in [35] and

with R = x√
2
,

Ẽij =
1

(n − 2)

( x√
2

)2−n
WiαjβNαNβ

=
−2

(n − 1)

( x√
2

)2−n
H ′′X̃iX̃j

which, by (4.25), has a finite limit on I where x = 0.

The imaginary Killing spinors described immediately before the statement of Propo-

sition 1 have the property that

X · ψ = 0 , (4.26)

where, as before, X = 〈ψ, γ0γµψ〉∂µ, and · denotes the space-time Clifford multiplication.

An analysis similar to that in section 3.2 applies, whatever n ≥ 3, as follows: Differentiating

(4.26) one finds, for all Y ,

(∇Y X) · ψ ∼ ψ .

By e.g. [12, Lemma 2.1, point 2] we then have

∇Y X ∼ X ,

which immediately implies staticity:

X[µ∇νXρ] = 0 .

The search for black hole solutions in this class is inconclusive: Any event horizon would

have to be degenerate, and then the remaining arguments of section 3.2 show that the space-

metric on the event horizon has a Ricci tensor proportional to the metric, with negative

proportionality constant. The consequences of this are not clear, as the constraints imposed

by topological censorship [33] are less stringent in higher dimensions.
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