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1. Introduction

In recent work [f[] one of us (DM) proved an inequality satisfied by the global charges for

three-dimensional asymptotically anti-de Sitter initial data sets with spherical conformal

infinity. In this paper we extend that work in several directions by a consideration of more

general initial data sets (S, g, K) on a spin manifold S. The extensions are as follows:

e We prove the corresponding inequalities in dimensions n + 1, n > 3, with a spin-

structure condition for non-spherical Scris (Theorem []).

For spherical Scris we obtain optimal inequalities for n equal to four and five, as well
as some natural but non-optimal inequalities for all n > 3 (Theorem B} by optimal
we mean that saturation of the inequality is a necessary and sufficient condition
for the existence of space-time Killing spinors at §). For n = 3, we show that the
total momentum cannot be null and give a sufficient condition slightly stronger than
equality for the data to be anti-de Sitter (Theorem [f). Still for n = 3, when the
associated space-time has a complete Scri with spherical cross-sections, we prove
that equality happens only in anti-de Sitter space-time (section B.4)).

For toroidal Scris we obtain optimal inequalities for all n > 3 (section [L1), and we
point out the existence of large families of non-singular (non-vacuum) initial data
sets which saturate the inequality (sections [£.3 and [.4).



e We prove that, in dimension 3+ 1, with spherical or toroidal Scri, black hole solutions

saturating the inequality do not exist (section B.2).

e We obtain an angular-momentum bound for general conformal boundaries at infin-
ity with covariantly constant spinors, again under a spin-structure condition (sec-

tion [l.9).
2. Global charges and their positivity

In this work we consider n-dimensional general relativistic data sets (S, g, K), which are
asymptotically anti-de Sitter (adS) in the following sense: first, we assume that there exists
a Riemannian background metric b which, in the asymptotic region, is of the form

b= dr? —|—f(r)ﬁ,

where h is either a unit round metric on S”! (then with the cosmological constant A
normalised to —n, and up to change of origin in r, f(r) = sinh?r), or h is a Ricci flat
metric on an (n — 1)-dimensional compact manifold "~ M (then, again up to these choices,
f(r) = %), where the space-dimension n is greater than or equal to 3. By [Bl], with those
f, the initial data (S,b,0) arise from static solutions of vacuum Einstein equations with
a negative cosmological constant!. Note that in the spherical case, or if ("1 M, ﬁ) is a
flat torus 7™ !, then (S,b,0) are initial data for anti-de Sitter space-time, or a quotient
thereof. In all cases (S,b,0) provide initial data for a static Einstein metric.

Next, there is a well-established set of decay conditions which guarantee finite and well
defined global charges, see [[, H], compare [J-[i. Following these works, we shall assume
that there exist constants k > 1, a > n/2 and C' > 0 such that for large r we have?

- ) < Ce o | .

lg = bls + [Dgly + -+ + D - Dgly + [Klp + -+ [ D--- D Kl|p < Ce (2.1)
k factors k—1 factors

Here | - |, denotes the norm of a tensor field with respect to the metric b, and D is the

covariant derivative of b. These decay conditions have been chosen because of simplicity
of the analysis involved; it should be recognised that they are restrictive, and a completely
satisfactory treatment should allow weaker boundary conditions, compare [§ for a related
analysis in the context of a vanishing cosmological constant A = 0.

To define the global charges, let X be a Killing vector in the asymptotic region of the
associated background space-time. It is well known that each such X defines a Hamiltonian
associated with the flow along X [, ]—[], as follows: Let V' be the normal component of X
with respect to the space-time background metric, and let Y be the tangential component
thereof; when defined along a spacelike hypersurface, such pairs (V,Y') are called Killing

Tt might seem natural also to allow ("~'M, k) to be a negatively curved Einstein manifold [E] However,
we shall see shortly that such solutions do not seem to fit into a Witten-type positivity argument, which is
the main concern of this work.

2In many of our arguments it is sufficient to assume the weaker, integral-type, decay conditions of [E,
section 3], but we have not checked whether all the calculations go through under such conditions.



Initial Data (KIDs). Then the Hamiltonian H (V,Y") corresponding to X (which we identify
with the pair (V,Y)) takes the form:

H(V,Y) = lim % /TR (UY(V) + Vi(Y)) dS; (2.2)

where
U(V) = 2y/det g <Vgi[k9ﬂllo)jgkl + DIV gi* (g — bjk) ; (2.3)
Vi(Y) := 2/detg (KJ - Kkk5;> Y. (2.4)

Here all indices are space indices, running from 1 to n, and D is the Levi-Civita derivative
of the space background metric b.

The normalisation constant 1/167 in (R.9) is convenient in dimension 3+ 1 when 7 has
spherical cross-section, but rather arbitrary in higher dimensions, or when non-spherical
cross-sections are considered.

We shall give conditions under which a Witten-type proof of positivity of global charges
applies. By this we understand an identity for a spinor v, relating an appropriate compo-
nent of the global charges to an integral over S of a bilinear in 1; the bilinear is positive
given a positivity hypothesis on the energy-momentum of the initial data set and a dif-
ferential equation for ¢ at S, with suitable asymptotic conditions for ¥ on §; positivity
of the relevant component of the global charge follows from a suitable existence theorem
for this differential equation; in the asymptotically-adS setting, we require ¥ to be asymp-
totic to an imaginary Killing spinor, a notion which we define below. (For more details of
the Witten argument, giving the spinor identity and an existence theorem in this setting,
see e.g. [ B, [, - Examples in which the Witten argument does not apply are given
in [, (1),

Thus the Witten-type proof needs a positivity hypothesis on the energy-momentum
of the initial data set, which will be the dominant energy condition or DEC. Denoting the
cosmological constant by A, we set

p:=R—|K|*+tr,K*-2A, J =D,K';—D'K’;,
where R is the scalar curvature of g. The DEC reads then
pz=|Jlg- (2.5)

Next, we need an imaginary Killing spinor for the background metric b; by definition,
this is a spinor field 1 in the asymptotic region Sey; := [Ro, 00) x "M solving the set of
equations
—A

XeTS Dxth=—iy|——
VXETS Dxv=—4/5 0T

XY, (2.6)

where X- denotes the Clifford product of X, and D is the usual Riemannian spinorial
connection associated with the metric b. Such spinor fields are known to exist when »~1 M



is a sphere; we point out several (well known [[J-[[d]) further examples, with alternative
topologies at infinity, in section [ below. The field v is a section of a bundle of spinors®
which we will denote by &'.

(It is worthwhile pointing out at this stage some more cases when the Witten-type
argument cannot be carried through: manifolds Seyt, with ("~ M, ﬁ) having negative Ricci
curvature, do not admit imaginary Killing spinors. This can be seen as follows: first, any
imaginary Killing spinor leads to a Killing vector in Sext. But it is known, e.g. from the
analysis in [[7, appendix A], that there are no Killing vectors on Sey in this case. Thus,
no lower bounds on the mass can be obtained by Witten-type techniques when, e.g., "~ M
is a two-dimensional higher genus surface.)

For the Witten argument to go through, we need to assume that S admits a spin
structure. Note that the spinor field 9 already singles out a spin structure on Sext, which
is necessarily compatible with the one of S when "~'M is simply connected. However,
those spin structures might be incompatible when "' M is not simply connected. A key,
rather restrictive, hypothesis in our work is that

the bundle &' over Sext extends to a bundle of spinors & over S . (2.7)

A short discussion of the hypothesis (B-7) is in order. First, (B.7) is satisfied by all
product topologies S = R x ""'M, or S = [0,00) x ""!M. These examples include the
hyperbolic-cusp solutions (f.1]) below, or the Kottler black holes [[L§] with toroidal topology
at infinity. On the other hand, (R.7) is not satisfied by the Horowitz-Myers solutions [[L].
Now, in that last example S is the union of a compact set and of the asymptotic region
Sext, and in such a context we have the following*: If "M = T2, the two-dimensional
torus, and S has no boundary (other than the conformal boundary at infinity), then the
trivial spin structure on T2, which does admit parallel spinors, never extends [L9, p. 91]
when compactness of the conformal completion of & is imposed. On the other hand,
for all higher-dimensional toroidal boundaries at infinity "~1M = T" !, n > 4, compact
boundaryless fillings for the trivial spin structure of T"~! exist M9, p. 92]. All this leads
to a large class of examples where (2.7) holds.

For the analytical arguments to go through, we need further to assume that (S, g) is
complete, either without boundary, or with a compact boundary satisfying the following:
Let A be the extrinsic curvature tensor of OS (considered as a submanifold of S, recall
that there is no space-time involved at this stage) with respect to an inward-pointing unit
normal v, let h be the metric induced on dS by g. The boundary contribution which
arises in the Witten argument with a spinor field satisfying the boundary condition of [2(]
(compare [RT]) will have the favorable sign provided that the boundary is either weakly

3By a “spinor field” we mean a section of a hermitian bundle associated to the Spin principal bundle
over S, equipped with an action of the Clifford algebra of S via anti-hermitian bundle-morphisms. In what
follows we shall freely make use of “doubling constructions” such as the one in () below, and therefore
we do not impose the often-implicitly-used condition that the representation of the Clifford algebra carried
by the spinor bundle is irreducible.

4We are grateful to M. Stern for discussions and references concerning the compatibility of spin structures.



future trapped,
trp A + hK,, <0, (2.8)

or weakly past trapped, which corresponds to changing the sign in front of the K term in
(). An alternative condition which allows one to conclude is that considered in [fll, f.
Setting k(v) = K;qv'dxz®, where the 2%’s are coordinates on dS, we then assume that

—2(n —1)A

trpA + [k(V)[n < -

(2.9)
(see [f, Remark 4.8] for a discussion of (R.9) when k(v) = 0).

Without loss of generality [[[J], we can assume that the spinor bundle & is equipped
with a hermitian product (-, -) such that Clifford multiplication by vectors tangent to S is
an anti-hermitian endomorphism. In the construction we will need a bundle isomorphism
¥ : & — & with the following properties:

()2 =1, (2.10a)
VX eTS A°X.-=-X-4°, (2.10b)
() =72, (2.10¢)
DA’ =4D, (2.10d)

where (%) denotes the conjugate of 4° with respect to the hermitian product (-,-) (by a
small abuse of notation, we shall use this symbol for the inner product on spin-space in any
dimension), and X denotes Clifford multiplication by X. Such a map always exists if & is
obtained by pulling-back to S a space-time spinor bundle, provided one has an externally
oriented isometric embedding of (S,g) in a Lorentzian space-time available. Then the
Clifford product N -, where N is the field of Lorentzian unit normals to the image of S, has
the required properties. Regardless of whether or not such a map exists, one can always
replace & by a direct sum of two copies of &; then, for X € T'S, we let X denote the
Clifford action of X and we set

VW1, 1) = (2, 01) (2.11a)
X (Y1, ¢2) == (X 91, =X - 4o) (2.11b)
Dx (¢1,12) := (Dx1, Dxb2) . (2.11c)

One checks that (R.11]) defines a representation of the Clifford algebra of (S,b) on & @ &,
and that (R.104) holds.

One use of 7Y is to construct Killing vectors for the metric b out of imaginary Killing
spinors. Indeed, if ¢ is such a spinor, and e; is a (locally defined) ON basis of T'S, then
the vector field

Y = (0% e
is a Killing vector of the metric b. Furthermore, the pair (V,Y), where V' = (1, 1), defines

a b-KID, by which we mean a KID of (S,5,0).
We can now give our first result:



Theorem 1 (Positive charges theorem) Consider an initial data set (S,g,K) satis-
fying the positivity and fall-off conditions (£.4) and (2.1), with (S,g) complete, and with
finite total matter energy: p € L'(S). We assume that either S has no boundary, or S
is compact and either ([2.8) (changing K to —K if necessary) or (2.9) holds. Suppose that
the Riemannian background metric b admits imaginary Killing spinors in the asymptotic
region, with respect to a spin structure which extends to the interior of S. Let KCy be the sub-
set of the set of b-KIDs which are of the form ({1,1), (1,7"€e* - 9)e;) for some b-imaginary
Killing spinor 1. Then for all X = (V,Y) € Ky we have

H(V,Y) >0,

with equality if and only if 1 asymptotes to an imaginary Killing spinor of (S, g, K) asso-
ciated with V.

Remark 1 [t should be emphasised that the imaginary Killing spinors provided by Theo-
rem [1 are only defined along S, and not in an associated space-time if there is one.

Remark 2 The bundle of spinors which is used in the proof is arbitrary. We will freely
make use of this fact in our analysis in subsequent sections.

PROOF: We use a Witten-type argument, as follows. Let (&, (-,:)) be any Riemannian
bundle of spinors over (S, }) with hermitian product (-, -), such that Clifford multiplication
(which we denote by “”) is anti-hermitian, and with a map +° satisfying (-104).

Given an initial data set (S, g, K), a vector field X, and a spinor field £ we set

K(X):=K/X'e-, (2.12)
Vx€ := Dxé+ %K(X)wog : (2.13)

Here e; is a local orthonormal basis of T'S; it is straightforward to check that (.19) does
not depend upon the choice of this basis.
The argument now has two main steps. First, one shows existence of a spinor

satisfying a modified Dirac equation,

2n(n—1)" .)X =0, (214)

el (Vj +1
and which asymptotes to ¥, where 1 is an imaginary Killing spinor of the background met-
ric. This can be done by rather obvious modifications of the arguments in [B], compare [,
see also [P, for the treatment of the boundary terms arising from a non-empty 0S.
Let us simply point out that one of the ingredients of the proof is a weighted Poincaré
inequality, established e.g. in [PJ] for the metrics of interest. This proves positivity of the
boundary integral in the Witten identity. The next step is to prove that this boundary
integral coincides with the Hamiltonian H(V,Y"). This is done by following the calculations
in 23] and [J]. We note that the relevant part of those calculations does not use the explicit
form of the imaginary Killing spinors, but only the equation satisfied by them. O



3. Spherical conformal infinity

A preferred set of background Killing vector fields is provided by those which are b-normal
to the initial data surface. The resulting Hamiltonians are usually interpreted as energies.
In contradistinction with the asymptotically flat case, where only one normal background
Killing vector field exists, if one assumes that conformal infinity has spherical space-like
sections, then there are several normal background Killing vector fields. This implies
that there is not a single energy, but rather an energy functional M. This functional M is

uniquely characterised by n+1 numbers m,), p = 0,1, ..., n, which transform as a Lorentz

covector under asymptotic isometries® of g,lgee M B. (The component mg) coincides with
the Abbott-Deser mass under appropriate restrictions [[f].) It follows that the Lorentzian
length of m,) is a geometric invariant of (S, g).

We start by reviewing the known 3+ 1 results. The asymptotically-adS-positive-energy
theorem implies that m, is causal, future pointing [, Bd, 4] (compare B, B, ). If it
vanishes, then (S, g, K) are initial data for anti-de Sitter space-time.

Quite generally, one can view the hyperbolic space as a unit spacelike hyperboloid in
R"™*1 the latter equipped with the Minkowski metric. If one assumes that my) is timelike,
after applying an asymptotic isometry to obtain m(, = (m,0,...,0), the background
Killing vector fields tangent to S can now be split into rotations and “boosts”. In space-

time dimension four it is customary to define the rest-frame angular momentum as

Jy = H(0,84)

where the (;)’s are the generators of rotations of 52, when embedded in R3:
By = €ijkt’ O -

The numerical values of the remaining three Hamiltonians, associated with the vector
fields C;y of (B.6) below, generating boost transformations, will be denoted by ciy- In
the asymptotically flat case the c(;)’s have the interpretation of the centre of mass of the
system, and can always be set to zero by a translation of the coordinates. This freedom
does not exist in the asymptotically adS situation. We will retain the name centre of mass
for the vector &= (c(;))-

It does not appear to be widely known that, in 3 + 1-dimensions, the positive energy
theorem for asymptotically adS initial data implies an upper bound on the center of mass
and the angular momentum in terms of m. This should be contrasted with the asymptot-
ically Minkowskian positive energy theorem, which bounds the space-momentum in terms
of the energy, but does not impose constraints either on angular momentum or on centre
of mass.” Recall that with our choices so far the energy-momentum vector m,) lies along

5These isometries are, essentially, characterised by conformal isometries of the conformal boundary at
infinity (in the current case the sphere).

SIn fact, the proof of this in [ﬂ] contains a gap which we fill, see the proof of Theorem H7 end of section @
below.

"Schoen (seminar at the ESI, summer 2003) has shown that there is no bound on the ratio |j|/m for
vacuum initial data sets with A = 0.



the time axis. A rotation of the coordinate system aligns the angular momentum vector ;
along the first coordinate axis. One can then rotate ¢ = (c(i)) to lie in the z—y plane. It is
shown in ([l that the positivity theorem [l| implies the following inequality

m = v/=A3(il + e )2+, | (3.1)

8

with vanishing m if and only if the initial data set arises from anti-de Sitter space-time.
The inequality (B.1)) can be rewritten in the manifestly rotation-invariant form

m > VA |2 + 2 + 28 x 71, (3.2)

where &x j is the vector product, while || = \/j(Ql) + j(22) + j(23), etc. In particular we have
the striking upper bounds

m>\/—A/3|7|, m>/—A\/3|d. (3.3)

Thus, both the length of the angular momentum vector and that of the centre of mass
vector are bounded by (a multiple of) the invariant norm of the mass functional M.

The first inequality in (B.3) is a familiar condition in the explicit family of Kerr-adS
metrics (see, e.g., []). Thus, the restriction on the range of parameters stemming from the
Kerr-adS family is not a result of our incomplete knowledge of the set of all solutions, but a
necessary property of non-singular asymptotically adS space-times satisfying the dominant
energy condition.

The above leaves several questions unanswered and suggest others: is there an equiv-
alent of (B.J) when my,,

"=1M is a two-dimensional torus? What happens in higher dimensions? In this work we

is null? What happens if the inequalities are equalities? What if

give partial or complete answers to these questions.

First some notation: from now on, in space-time dimension n, we view the hyperbolic
space as the open unit ball B*(1) C R" equipped with the metric b = "b = w™24, where §
is the standard flat metric on R™, and

1—|af?
R

w =

In the obvious spin frame associated with this conformal representation®, the imaginary
Killing spinors of "b take the form

Py = w_1/2(1 — ixk'yk)u (3.4)

8The normalisations of the Hamiltonians are a matter of conventions, ours are as follows: the mass
m (o) is the numerical value of the Hamiltonian associated with the background Killing vector d; when the
background adS metric is written in the form —(1 — Ar?/n(n — 1))dt*> + (1 — Ar? /n(n — 1)) "tdr? + r2dQ?,
where dQ? is the unit round metric on the (n — 1)-dimensional sphere. This normalisation is convenient for
comparison with the A = 0 limit. Next, the angular momentum is the numerical value of the Hamiltonian
associated with the rotations of S"~! normalised so that a rotation by 27 is the identity. Finally, the center
of mass is normalised to make the right-hand-side of our inequalities look simple.

9More precisely, we take a spin frame which projects to the frame 8" = w™'dz’, and a local basis of the

o

spinor bundle in which the v*’s are constant matrices.



(summation over k), where u is a spinor with constant entries, while the anti-hermitian
matrices v¥ with constant entries satisfy the flat space Clifford relations

VA et = 267
(The s exhaust the space of imaginary Killing spinors because the map which assigns

u to ¥, (0) is a bijection). As already mentioned, we will also need a hermitian matrix +°,
with constant entries, satisfying

("?=1, A ++"=0.

(If such a matrix does not exist we first make a doubling construction on the u’s as in

(.11)).) The KID (V4,,Y;}) associated to v, takes the form

1+ |z|? , (—2)zF
. _ 2 k
Vi = (Yu, ) = 2<]u\ =2 +(u, 1y u) 2P > , (3.5)
=Vio) =Vik)
Yqjal = <7/)u,707i¢u>6z
L+ |z

7 7 1 - 7 7
= 2(u,%"u) ( 0 — &'k 0 5, 190 (7 = 7)) (ks = widh)
) %/_/

> =0 :

(3.6)

The KIDs (V(,,),0), u = 0,...,n, together with (0,Cy), k = 1,...n, and (0,Q);),
1 <i < j < n, span the space of KIDs of (B(1),b,0). The Q(i)(j)’s obviously generate
rotations, and therefore it is natural to use the name angular momenta for the correspond-
ing global charges; these will be denoted by J(;);). As shown in H, B, the collection of
functions (V(O), Viys -+ V(n)), transforms as a Lorentz covector under conformal isometries
of the boundary at infinity. This is at the origin of the name energy-momentum wvector,
denoted by my,), for the associated charges. As already mentioned at the beginning of
this section, the C(;)’s generate Lorentz boosts, when the hyperbolic space is embedded
as a hyperboloid into (n + 1)-dimensional Minkowski space; the associated charges will be
denoted by c(;), and called center of mass.

It will be convenient to reduce Ji;(;) to a canonical form. As a matrix J(;) is anti-
symmetric, so that there exists an ON-frame in which Ji(;) is block-diagonal, built out of

0 W(;
[_w(,) é’] : (37)

two-by-two blocks of the form

with furthermore a last column of zeros in odd space-dimension.
Our next result is the following:

Theorem 2 Let S be spin with dimS = n > 3 and suppose that ""*M = S"~! (then the
spin structures on S and Sexy are necessarily compatible). Under the remaining hypotheses
of Theorem [, my) s causal future'® directed, or vanishes. Furthermore,

0The notion of causality of My, is determined by a Lorentzian metric with signature (1,n) defined by
the group of isometries of hyperbolic space [E], with “future” defined as m ) > 0.



1. In every conformal frame'! it holds that

gy > lwmy| + [wey | + -+ lw)l (3.8)
where
o n(n—1)
fimy /M0 (3.9)

2. If m,y us null, then the space of V—imaginary Killing sections of & ® & over S (as
defined in ([2.11)) is at least dim &-dimensional.

3. When m, is timelike we also have, in a frame where m;y =0,

mgy > \/0%1) +- c%n) . (3.10)

4. 1f m(gy vanishes in some conformal frame, then all global charges vanish, and the
space-time metric along S is Finstein with vanishing Weyl tensor.

5. In dimension 5+ 1, in a specific frame which will be defined in the proof below, we
have the stronger inequality, which is optimal:

tm > \/ ctyy + gy + sy Wiy Hwhy + 2\/ (wayew)? + (Weyee)? + (Waywe)? -
(3.11)

6. Inequality (8.11) remains valid and optimal in dimension 4+ 1 after setting c(5) = 0.

7. Similarly (3-11) remains valid and optimal in dimension 3 + 1 after setting c5) =
w2y = 0, and is then identical to (3.3).

Remark 3 FEquation suggests that in all dimensions the following (non-optimal)

inequality should hold
2
mo) = \/Z &+ (X 1ww|)

i<j

Remark 4 A class of 4+1 dimensional examples with m(gy # 0 saturating the bound B3)
is given by the metrics in [2§] with F;{V =0, or the metrics in [24].

Remark 5 We will see in section below that, in dimension 3 4+ 1, under natural hy-
potheses m,y cannot be null.

HRecall that the decomposition of g as a background plus a correction term involves a choice, and that
two such choices can be related to each other by a conformal transformation of the conformal boundary at
infinity, plus higher order corrections [E] We use the term “conformal frame” to emphasise the fact that
such a choice has been made.

,10,



PrOOF: To avoid annoying multiplicative factors involving the dimension and the cosmo-

logical constant, all calculations that follow are done assuming A = —n(n — 1)/2, so that

the background hyperbolic metric has all sectional curvatures equal to one. This can be

achieved by a scaling of the metric; the general result is then obtained by rescaling back.
We have

H(V,, Vi) = 2H ([u2(Vig), 0) + {u, i7" u) (Vi 0)
1 -
+ (u, Y9 u) (0, Cpy) + Z(%W%VW — ¥Iy")u) (0, Q(k)(j)))
————
:;Q'ij
= 2(Juf® H(Vig), 0) +(u,iv" ) H(Viy),0)
S——— N———
m(0) (k)
1, oo
+ (u, vy u) H(0, Cr) +§<u7 "y )y H(0, Q7)) >
——— —— —

(k) ) (45)

= 2(u, (me) + iv*me + "7 e + 517" T ) w)

By the positivity Theorem [l| the matrix () must be positive semi-definite. Let us explore

the consequences thereof.
We start by restricting our considerations to spinors u satisfying

u = +u (3.12)

and |u|? = 1 (recall that 4 is hermitian, and its eigenvalues are plus or minus one since
its square is one). As 4* anti-commutes with v°, it maps (£1)-eigenspinors of 7% to (F1)-
eigenspinors; thus yu and °y%u are each orthogonal to u. We conclude that, on the

eigenspaces of 7%, the following holds

i ,
(1, Qu) = (u, (o) + 57"/ Ty ) ) -

For n = 3 (compare (B.7)) we have

1. ; .
§Z'YO'ijJ(k)(j) = w2, (3.13)
while in higher dimensions 2] < n < 2] + 1 we can write
1. ; . . . _
—i" 9 Ty ) = wayin v R + weyin "yt + - wgyin ™y (3.14)

2

The matrices i7°v**~142¥ are hermitian, with square one, therefore their eigenvalues are

plus or minus one. We will need the following;:

Lemma 1 For every collection {€q}a—o....1, with €2 =1, after performing a doubling of &
if mecessary as in ), there exists u satisfying v'u = equ and

Va > 1 02020, = equ

— 11 —



Remark 6 The result is wrong without the doubling in general, which can be seen by taking
n =2,y =ioct, v =io?, and 4 = o3, where the o'’s are the usual two-by-two Pauli
matrices.

PROOF: The matrix i7%~'42! is hermitian, with square one, therefore its eigenvalues are
plus or minus one. The matrix v? defines a bijection between the (+1)-eigenspace and
the (—1)—eigenspace, so that each of these spaces is non-empty. Let X; denote the eye—
eigenspace of iy2 =142, For 0 < pu < 21 — 2 the matrices v* commute with #7212 which
implies that X is invariant under their action. For [ > 3 we repeat this construction to
obtain a subspace X;_; C X; on which iy 34272 = ¢y¢_1. After | steps we obtain a
space Xg C X; C ... C X; which is invariant under 4°. If there exists a spinor u in Xj
such that 4%u = egu, the result immediately follows. Otherwise we double & as in (R.11),

we take 14 to be any non-zero element of Xy, and we set u = (4, €ott). O

Let u be given by Lemma [] with ¢, = —sgnw(q). We obtain

0.< (u, Qu) = (o) = lwiy)| =+ = ) ul?,

proving point El:

my > |wayl + - + ol -
In particular m g is non-negative. Since conformal transformations of the sphere at infinity
induce Lorentz transformations of m(,) we obtain that m,) is causal future directed, or

vanishes. Equality implies that the boundary integral in the Witten identity vanishes, and
the volume integral shows that u is an imaginary Killing spinor (on §) for the modified

connection (.13).

If my,,) is timelike we clearly also have
m = |wy| + -+ |we)l (3.15)

where

with nW®) = diag(—1,+1,. .. ,+1), and the w(;)’s in (B.15) are the angular momenta in a
Lorentz frame in which m, is aligned along the time axis.

Still assuming timelikeness of M := (m,)), and choosing an ON frame in which M is
aligned along e(g), we now drop the condition (B.12) and assume that n = 3. We retain
(B.13), and make a rotation in the {e1,es} plane so that ¢y = 0. Since the hermitian
matrices 7°y! and i7%y'9? commute, and square to one, we can choose u; such that
|u1|?> = 1 and, replacing v* by —! and 2 by —~+? if necessary,

. 0.1.2 0.1
Y'Yy UL =ur, Yy U1 = uy -

Set
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From the Clifford relations one easily finds that

Quq m + (C(l) + W(l)) C(3) 0 0 Uy
Quo . C(3) m — (C(l) + w(l)) 0 0 U9
Qus o 0 0 m + (—C(l) + w(l)) C(3) us
Quy 0 0 (3) m — (*C(l) + W(l)) Ug

One can further check that the u;’s form an ON basis as follows: wuq is orthogonal to us
because both are eigenvectors of the hermitian matrix i7%y'y? with different eigenvalues.
(This can be verified by inspecting the sign in front of w1y in the matrix above.) For
the same reason u; is orthogonal to uy4, and wuo is orthogonal to ug. It remains to justify
orthogonality of the elements of the pair (uj,us), similarly for (ug,u4). These follow from
the fact that the first spinor in each of those pairs is an eigenvector of 7°y! with an
eigenvalue different from the second one in the pair.'?

Thus, the w;’s form an ON basis of Vect{u;}, so that the positivity properties of @,
when restricted to this subspace, can be read off by calculating the eigenvalues of the
matrix above. These are easily found to be

m =+ \/(C(l) + W(l))z + 0%3) .

In particular we have rederived the property that @ is non-negative if and only if Maerten’s

inequality (B-) holds. Furthermore, there will be at least two linearly independent imag-
inary Killing spinors if and only if the kernel of @ is at least two-dimensional. Under the
current hypotheses, and assuming an irreducible representation of the Clifford algebra, this
will happen if and only if

cway =0 < J(Z-)(j)cj =0 <= ; xc=0. (3.17)

We now return to general dimension, also dropping the assumption that m, is time-
like. We use spinors obtained by the “doubling” technique as in (R.11); it then follows that
the matrix ) has the following block structure:

. i
m) +iv'muy = ew + 5Imo 1™
Q= (3.18)

=:B
Lom) — i my

Yeew + 3 Tmn ™y
(Positivity of  when restricted to spinors of the form (u,0) gives immediately that M)
is causal future pointing, which we already know.)

Suppose that m, is null, then there exists a (% dim &)—dimensional space of u € &
such that (mg) + iv*m))u = 0. Likewise there exists a (3 dim &)-dimensional space of
v € & such that (m) — i’ykm(k))v = 0. Applying @ to a pair (u, \v), where A € C, with
such an v and v, we obtain

0 < {(u, \v),Q(u, \v)) = 25&((% )\Bv>) .

121f one uses a space of spinors which carries an irreducible representation of the Clifford algebra, than
the above matrix describes @@ completely. Otherwise one can, using descending induction, find an ON basis
in which @ is block-diagonal, with blocks as above.
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Since A is arbitrary we conclude that ((u,v),Q(u,v)) = 0. Thus, the space of pairs (u,v)
which lead to a zero Hamiltonian charge H equals at least %dimG + %dimG = dim&.
Witten’s identity shows that each such u leads to an imaginary V-Killing spinor of (S, g, K),
section of & & &. This proves point J.

Suppose, next, that m,) is timelike, and let us use a conformal frame in which
m) = 0. Using a spinor of the form (u,4u) one obtains instead

0 < ((u,iu), Q(u,iu)) = 25&((% (M) + zB)u>) = 2(u, (m(gy — i’ykc(k))w

for all u, proving (B.10).

To prove point [i, suppose that mg) vanishes, then m) = 0 by causality of m,,
further Jiy) ) vanishes by (B-9). Applying (B-1§) to spinors of the form (u,+v), positivity
of ) implies ¢) = 0. Thus @ vanishes, which implies that the space of Killing spinors has
maximal dimension. One concludes that the space-time metric is Einstein, with vanishing
Weyl tensor, along S by the calculations in [[l], section 4], which are done there for n = 3,
but remain valid for larger values of n.

In order to establish our remaining claims, we describe now an attempt to obtain a
simple form of @ in higher dimensions. While part of the calculation that follows can be
done in any dimension, we have only been able to carry it out completely in dimensions
4+ 1 and 5+ 1. We assume that m) is timelike, and we use an ON frame adapted to
mgy in which (B.14) holds. In each plane Vect{es;_1,ez;} we further make a rotation so
that ¢(2j) = 0. Let [ be such that 2l <n <2/ 41, for 1 < j <[ set

0.2j—1_2j

Bj:=in’y¥ Ty Ay =AW

then the A;’s and B;’s are hermitian, with square one, and satisfy the commutation relations

—A;B;, i # j; —AjA;, i F# J;
B;B; = B:B;, B;A; = I A A = i ’ 3.19
J J J {AjBia i= 7, J {Ain, i=7j. ( )

Changing some of the v*’s to —v*’s if necessary, we can find a spinor u such that
W) Biu =Uu.

Setting

u; = Aju,
one easily obtains the Bju;’s using B.19):
—Uj, T F J;
Bju; = " * "
Ui, 1 =7.

For n = 6 we can enlarge Vect{ug := u,uj,us,us} to a space which is invariant under
the action of the A;’s by adding, to the generating family {u,}, the spinors uy := A;Asu,
us = Ay Asu, ug := AsAsu, and uy := Ay AzAsu. It is then easy to work out the matrix
of @ in that basis (by considerations similar to the ones after (B.1€¢]) one checks that the
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uy,’s form an orthonormal family); we only report the result for w3y = 0; for typesetting
reasons we write b; for w(;) and a; for c(g;_1):

[m-4b;+by ay as as 0 0 0 0
aq m+biy — by 0 0 —ay —as 0 0
as 0 m — by +by 0 a 0 —as 0
as 0 0 m — by — by 0 a1 as 0
0 —as ai 0 m — by — by 0 0 as
0 —as 0 ay 0 m — by +bsy 0 —ao
0 0 —as as 0 0 m-+b; — by a1
L 0 0 0 0 as —as ai m~+by+bs |

One can use MAPLE or MATHEMATICA to compute the eigenvalues of () without assuming
w(z) = 0, but this does not lead to useful expressions. However, suppose that n = 5; after
embedding the five-dimensional Clifford algebra into a six dimensional one, this form of a
general @ holds in the basis above. A MAPLE calculation shows then that the eigenvalues
of @ on this subspace all have multiplicity two, and are equal to

m+ \/ cfyy + clyy T sy Wiy Ty £ 2\/ (wyew)? + (Weye)® + (wawe)? -

This gives (B.11)).
Specialising further to ¢y = 0, a similar argument gives the inequality for n = 4,
proving point f; a further specialisation leads to point [q. O

3.1 Impossibility of null energy-momentum when n =3

Under the hypotheses of Theorem [l], equality in (B.3) leads to the existence of imaginary
V-Killing spinors on §. We have the following result, which does not assume a spherical
conformal boundary:

Theorem 3 Let dimS = 3, and suppose that (S, g, K) admits a non-trivial imaginary
Killing spinor for the connection (B.13). Then:

1. The Killing development of (S, g, K) admits an imaginary Killing spinor.

2. If there are two linearly independent such spinors on S, then the Killing development
of (8,9, K) is vacuum and has vanishing Weyl tensor.

Remark 7 In higher dimensions, the minimal number of Killing spinors which enforces
the vanishing of the Weyl tensor does not appear to be known. For example, consider a five-
dimensional Lorentzian Einstein-Sasaki manifold (all reqular types can be constructed as
St-bundles over Kdihler-Einstein manifolds with negative scalar curvature, see [13-[d]). A
Lorentzian Finstein-Sasaki space is not conformally flat and has (if it is simply connected)
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at least two linearly independent imaginary Killing spinors.'®> In those examples we can
choose dim & = 4, leading to dimension four of the space of doubled imaginary Killing
spinors in point [ of Theorem [1. Restricting to an irreducible sub-representation of the
Clifford algebra will presumably lead to a two-dimensional space, so that our constraints on
a null m,) do not exclude such non-trivial geometries. In fact, five-dimensional examples
with a two-dimensional space of imaginary Killing spinors can be found within the family
described in section [[-4, with a toroidal Scri; but note that these do not have a null m(y)-

PROOF OF THEOREM PJ: For point 1, we need to show that existence of space imaginary
Killing spinors for (2.13), that is spinors satisfying the following:

—A

— 1 o ,
VX¢:DXT/)+§K(X)'W Y+ Il —1)

X-9=0, XeTS, (3.20)

necessarily implies that of space-time imaginary Killing spinors in the Killing development
of (S,9,K).

We will prove the result using Dirac spinors on S, and especially their decomposition
into two component spinors, which simplifies the calculations. We use Greek indices for
space-time, preserving Latin indices for some of the lower dimensional situations which
follow; two-component spinor indices will be capital Latin indices as usual (see [27] for
further two-spinor conventions; note, however, the opposite signature of the metric here).

A space-time imaginary Killing spinor v can then be represented by a pair of spinor
fields (a4, B4/) satisfying the following coupled system of equations (compare [R§, sec-
tion 2]):

Vaaap = beapBar
VAA’BB’ = bEA/B/OéA s (321)

where b is a constant (not to be confused with the background metric of section B), which
without loss of generality may be assumed real, and is then related to the cosmological
constant by A = —6b2.

Saturation of (B.J) implies that the data (S,g, K) admits a spinor field ¢ satisfying

the projection into S of (B.21)), say
1125, =0, (3.22)

where II7 is the tensor projecting tangentially to S and S, stands for:

Vaaap —beapBar
Sy = . 3.23
<VAA’ﬂB’_b€A’B’aA ( )

Given a solution (a4, B4/) of (B:21), another solution is provided by (84, @as). The
two solutions are linearly independent unless a4 and 3, are proportional, say as = fG4
for some function f. In this case, it follows from (B.21)) that f is a complex constant, of

13We are grateful to Helga Baum for those remarks.
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modulus one, and it can then be absorbed into a redefinition of G4:. Thus, given a solution
of (B.21)), we necessarily have at least a two-dimensional space of solutions unless we have
a solution of

Vaa0p = beap0gr. (3.24)

For reasons which will appear, we shall call this the null case, while a solution of ()
not of this form we call the non-null case.

Assuming that the full (as opposed to (B.23)) system (B.21)) holds, by commuting

derivatives one finds
!

¢ABCDO[D =0= EA/B/C/D/ﬂ
dapap o’ =0=dapapB°
where Y apcop is the Weyl spinor, the spinor representing the Weyl tensor, and ¢papa/pr is
the Ricci spinor, representing the trace-free part of the Ricci tensor. In the non-null case,
when a4 and 34 are linearly independent, it follows from this that the Weyl and trace-free
Ricci tensors both vanish and the space-time is locally anti-de Sitter.

For non-trivial examples, therefore, we need to be in the null case. From (B.24) by

differentiating again we obtain
YaBepo” =0=dapapo”,

so that
Yapep = Yoaopocop , ¢apap = Posoposop ,

for complex functions ¥ and .

Even in the null case, if there are two linearly-independent such solutions, we shall
again have, locally, anti-de Sitter space (since Y apcp and ¢apa g cannot take this form
for two independent spinors).

We return now to (B.22). Suppose first that we are in the non-null case. The vector

X constructed according to
X = oA 1 G4 (3.25)

will give [fl] ‘Killing Initial Data’ at S. In the Killing development of (S, g, K), X will be
a future-pointing, timelike Killing vector. From (B.25) we see, at S,

XX, =-2VV, (3.26)
where
V= aABA.
By (B.22) we have
szav = sz(aAaA/ — ﬁA/BA’)a (327)

which is real so that the imaginary part of V', say I, is necessarily a constant along S.
Recall that the Lie-derivative of a spinor field aiy along a Killing vector L® is defined
as
Loy := L“VﬂaA—F‘I)AMaM (3.28)
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where the symmetric spinor @5 is defined by
VL, = ®yNenn + @y NEMN (3.29)
see e.g. [R9, p. 40]. For X, from (B.29) and (B.29) we find, at S,
AV, X5 = 26104 (v Bpyemr B + T Bpryemn),
so that, at S in the Killing development,
VaoXp = 2b(oaBpyearn +aBprean) + navs,

for some vector field vg where n, is the (unit, timelike) normal to S. Symmetrising over
the indices a and [ the left-hand-side vanishes, thus so does the right-hand-side, which
implies v, = 0. Thus the derivative at S of X is

VaXp = 2b(aBpyean + @ Bpyean) , (3.30)

so that
Pap = 2baafBpy -
We impose

EXOZA—Q’ibIOéA:OzﬁxﬁA/—Q’ibIﬂA/ (331)

in the Killing development, with a4 and 54 known on § and I the value of the (constant)
imaginary part of V at S. This determines the spinors throughout the Killing development.
Note also that now LxV = 0 in the Killing development, so that I equals &V throughout.

Furthermore, it follows that
LX(a(ABB)) = Oa

so that the Lie derivative along X of both sides of (B.3() vanishes, and therefore this
equation holds throughout the Killing development.

From (B-31)), (B-3() and (B-28), we now have
XS, =0
with S, as in (B.29), and from (B.31)
LxSq = 2ib1S,.

Since X is transversal to S, this with (B.29) gives S, = 0 at S, and therefore throughout
the Killing development. Now we have a solution of (B.21) in the Killing development,
which is therefore locally anti-de Sitter.

The null case is very similar: now we have a solution of

155, =0, (3.32)
where this time S, stands for
So := Va0 — bespop: . (3.33)
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We define the Killing vector by
X = oY, (3.34)

This is a future-pointing null vector (which is why we called this the null case). Since V is

now zero, (B.31)) becomes

[,XoA =0

and we proceed as before.

For the derivative of X we find in this case
VaXpg = bosopeap + boaopeap. (3.35)

It follows that
X¢S,=0 (3.36)

at S, so that again S, vanishes at S, but now Lx.S, = 0. We conclude as required that
S, vanishes in the Killing development.
O

We shall say that (S, g, K) are smooth at infinity if the corresponding initial data for
the conformally rescaled metric are smooth at the conformal boundary at infinity. We have
the following corollary of Theorem f:

Theorem 4 Under the hypotheses of Theorem [1 let dim S = 3, assume that the conformal
boundary at infinity S is a finite collection of spheres, with the metric satisfying the decay
conditions (2.1) in each of the asymptotic regions. Suppose moreover that the conformally
completed manifold SUS is compact. If (S, g, K) is smooth at infinity then:

1. If (S, g, K) admits two linearly independent imaginary Killing spinors for the con-
nection (which will be true if m() vanishes), then the initial data set arises
from a hypersurface in anti-de Sitter space-time.

2. m(y) cannot be null.

3. Equality in (B-3) together with j x @ = 0 (equivalently, waycy = 0) occurs if and
only if (S,g,K) can be obtained from a hypersurface in anti-de Sitter space-time.

Remark 8 The condition that (S, g, K) is smooth at infinity ensures equality of the Witten
boundary integral with Ashtekar’s formula for mass in terms of the Weyl tensor, and can
be weakened by working out the differentiability threshold needed for this equality.

ProOF OF THEOREM [: []. By Theorem [}, or by point f] of Theorem [ if m(g) vanishes,
the Weyl and Ricci tensors vanish so that the Killing development is locally anti-de Sitter.
To prove that it is globally anti-de Sitter, it suffices (compare the arguments in [fl, The-
orem 1.4]) to prove that it is geodesically complete'*. This will be a consequence of the
following Lemma, provided that we can show that its hypotheses are satisfied:

The proof of geodesic completeness of the Killing development of (S, g, K) in [7 Theorem 1.4] in-
vokes [E, Lemma 1.1]. However, that last lemma is incorrect. A counter-example is given by the domain
of outer communications of an extreme Reissner-Nordstrém black hole.

,19,



Lemma 2 In space-time dimension n+ 1 > 2, consider a stationary Lorentzian metric

g = —exp(p)(dt + 6;dz’)? + h | (3.37)
=:0
on M = Ry x S, where h is a complete Riemannian metric on S, with Killing vector
X = 0 satisfying
exp(n) = —g(X,X) > e, [Bla <, (3.39)

for some constant € > 0. Then (M, "*1g) is geodesically complete.

Remark 9 This lemma together with the remaining arguments of the proof below shows
that, in all dimensions n > 3, the vanishing of m(q)y implies that the data set arises from the
anti-de Sitter space-time whenever the subspace of KIDs generated by those arising from
spinors contains a KID satisfying ). We will show that this is necessarily true when
n = 3; to generalise our result to all dimensions one would need to justify ({3.38) forn > 4.

PROOF: Let I'(s) = (t(s), A(s)) be an affinely parameterised maximally extended geodesic
in (M, "tlg), set

c:="Mg(M,T), pi=" g, X)=—e"(i+6()),
thus € and p are constant along I". Hence
hAMA) =e+e Pp? <O
for some constant C', and then
i = e p+0(N)] <",

for some other constant C’. This implies that for any bounded interval I C R the closure

I'(I) of the image I'(I) C M is compact, and completeness of (M, "*1g) readily follows.O

Returning to the proof of Theorem [, since the Weyl tensor vanishes, it follows e.g.
from [B1] that in each of the asymptotic regions the Witten boundary term is identically
zero.'® Hence the matrix @) vanishes, and there is an imaginary Killing spinor y, at S for
every choice of imaginary b-Killing spinor 1, in each asymptotic end, with x, asymptoting
to zero in all the remaining ends. However, the number of imaginary Killing spinors is at
most equal to the number of imaginary b-Killing spinors in one end; it follows that S can
only have one asymptotic region.

We show that at least one of these imaginary Killing spinors leads to a Killing vector
which is timelike everywhere on S, with controlled p and 6.

By (B.21)), for any space-time Killing spinor, we have

ValaaB —aupd) =0, (3.39)

51n [EI] the existence of a space-time with a global Z is assumed, but the calculations there can be
repeated in our context.
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. . —A . . e .
so that the imaginary part SV of V = a4 is constant. By choosing the Killing spinor
so that this is not zero at some point p on S we ensure that it is nonzero everywhere. But
the Killing vector X of (B-2§) has norm

—1g(X,X)=2VV >2(3V)? >0, (3.40)

so that the Killing vector is everywhere timelike.
By Lemma [l there exist spinors u+4 such that, in any dimension n > 3, for
a=1,...,[n/2],

lurol =1, Yuro=usro, "V 9 urg=tusy.
The calculations in (B.J)-(B.) show that the resulting b-KIDs lead, respectively, to the
following b-Killing vectors

I
O % (Z; Q(zaq)(za)) :

Adding, we conclude that the vector subspace of b-KIDs generated by imaginary b-Killing
spinors contains the vector 0.

Recall, next, that under the current conditions (S, g, K) has the maximal number of
imaginary Killing spinors. This implies that for every p € S the map which to u assigns
the value x,(p), where ¥, is the solution of the Witten equation which asymptotes to ¢,
is a linear bijection. Now, the equation SV (p) = 0 defines an algebraic variety in the
space of spinors at p, the complement of which is open and dense. Therefore there exists
an open and dense set of u’s such that the corresponding y,’s will have SV (p) # 0, and
consequently will lead to timelike KIDs. (A KID is called timelike if the associated Killing
vector is.)

Set
1

Tl
where z is a coordinate as in (B.4). It follows from (B.)-(B.6), together with the asymptotics
of solutions of the Witten equation, that for any € > 0 we can choose u+ . so that u4 .

r

approaches u4 o as € tends to zero, and the corresponding KIDs (Vi , Y4 () are timelike,
with, for large r,

VemVie+ Vo c=1040()r, |Yic+Y_ (|g=0(e)r. (3.41)

(Note that a sum of timelike future oriented KIDs is timelike.)
We consider the Killing development defined by (V,,Y.), with e sufficiently small so
that Ve > 2r/3 and |Y¢|; < 7/3: thus M is Ry X S with metric

tg = —V2dt* + g;j(da’ + Yidt)(da? + Y dt),
with Killing vector X = 9;. Letting

exp(p) = —"g(X, X) = V2 - Y] (3.42)
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we rewrite the space-time metric g as in (B.37),
Y9 = —exp(p)(dt + 0;dz")* + I, (3.43)

so that
(92‘ = —e_“ginej . (3.44)

The asymptotics (2.1)) of g, together with compactness of S U S and the Hopf-Rinow
theorem imply completeness of (S,g). The Riemannian metric h is related to the initial
data metric g by the equation

hij = gij + exp(p)0:6; ,

and, since the last term gives a non-negative contribution on any given vector, completeness
of (S, h) follows from that of (S, g).

The function y is uniformly bounded away from zero by (B.39)-(B.40) and, for all e
sufficiently small, it tends to infinity as one recedes to infinity on Sey by (B.41).

Finally, from (B-44) and (B.41), */2|6|, is uniformly bounded in (each of) the asymp-
totic regions, and the norm with respect to h is equivalent to that with respect to g (with
error terms of order €2). Since S is a union of a compact set and one asymptotic end where
6 has already been shown to be controlled, a uniform bound on ||}, follows. Point [] follows
now from Lemma .

B By point @ of Theorem [ there are at least two linearly independent Killing spinors,
and the result follows from point [] of the current theorem.

[}: As pointed out in the paragraph preceding (B.17) the hypotheses of point [f are
satisfied. O

3.2 Non-existence of black hole solutions saturating the equality, n =3

Whatever the dimension n > 3, there exist higher-genus Kottler black hole space-times
with zero Hamiltonian mass. One could naively think of those as saturating our positivity
bounds. However, it should be borne in mind that, for reasons already explained, those
solutions (as well as any solutions with the same asymptotic behavior) do not possess
imaginary Killing spinors, so our inequality does not apply.

We wish to show, under a natural supplementary assumption, non-existence of (34 1)-
dimensional black hole space-times (not necessarily vacuum), with spherical or toroidal
conformal infinity, saturating the angular momentum bound, except perhaps for Weyl-flat
solutions. To be precise, in addition to the hypotheses of the positivity theorem [, we will
assume that S is the union of an asymptotically hyperbolic region Sexy and of a compact
‘9)
is not conformally flat.'® The hypothesis that the bound is saturated implies existence of a

set, with non-empty smooth boundary. Moreover, we suppose that the space-time (M,

Killing spinor, and thus also of the associated Killing vector which we call X, which must

16This hypothesis is used to prove that the horizon is degenerate. It can be replaced by the condition
that the imaginary Killing spinor extends smoothly across the event horizon, as then the associated Killing
vector will be causal, which again enforces degeneracy.
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be null by the analysis of section B.I. The hypothesis of existence of a black hole will be
encoded in the assumption that the boundary of S, when moved by the flow of the Killing

vector field X, forms'”

a null hypersurface H. So, assume for contradiction that a solution
satisfying the above exists. Then X is necessarily tangent to the generators of H, with zero
surface gravity since X is null everywhere. It follows from (.35) that the solution is static
in the sense that X’ AdX” = 0, where X* = %¢(X,-). In vacuum this implies [BY that the
horizon has higher genus topology. But this contradicts [BJ, Theorem 4.1], showing that
vacuum solutions of the above kind are not possible. Finally, the reader will easily check
that the hypothesis that the space-time is vacuum plays no role in this argument, because
the energy-momentum tensor of the space-time metric is necessarily proportional to X ® X,
and such a tensor does not affect those equations in [BJ] which are relevant to the problem

at hand, so that there are no non-vacuum black holes satisfying these conditions either.

3.3 Siklos waves

Theorem { shows that for nontrivial examples saturating Maerten’s inequality we need
there to be just a one-dimensional family of solutions of (B.24). Metrics with this property
will be briefly described in this section. We have seen in section B.J that, subject to some
natural restrictions, such examples do not include black hole solutions. In fact, we shall
see in section B.4 that such examples are not possible at all in three space dimensions if we
further assume that Z has spherical cross-sections and is “large enough”.

The “Lobatchevski plane waves” of Siklos [B4], which we propose to call Siklos waves,
are precisely characterised by the existence of a nontrivial spinor satisfying (B.24). Siklos
shows that it is possible to introduce coordinates so that the metric may be written as

9= g2 (dz? + dy?* — 2dudv — H (u, z,y)du?) . (3.45)

Here X = 0/0v. (The signature of (B.49) is reversed as compared to [B4].) The Weyl and
Ricci spinors are

¢ABA’B’ = <I>0A035A/53/ s (346)

Yapcp = Yoa0B0c0oD , (3.47)

where ® and ¥ are given in terms of H by'®

® = b0t (Hyy + Hyy — 2H, /) . (3.48)
U = b2 (Hyy — Hyy — 2iH,,) (3.49)
The cosmological constant is A = —6b? (this is not the A of the Newman-Penrose formalism

which would be 24b%).

"Note that the level sets of u are null hypersurfaces generated by X, but with non-compact intersection
with S.
8The multiplicative factor 1/16 in the equation for ®22 in [@, p. 254] should be 1/4.
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The Killing vector X Lie drags the Weyl spinor (since it is a symmetry) and the
Lie derivative defined by (B.2§) commutes with contractions and tensor products, so that

from (B.47)
X0, = 0. (3.50)

If H is zero, then (B.43) is the metric of anti-de Sitter space with Z at x = 0. A
variety of other choices for the function H also lead to anti-de Sitter space, in particular a
constant, say H = Hy, as the coordinate transformation

1
dv — dV = dv + §H0du
demonstrates.

3.4 Rigidity in the n = 3 spherical case

In section B.1] we have shown that a null m,) cannot occur. In this section we wish to show
that the remaining possibilities for equality in (B.2) only occur in anti-de Sitter space-time,
under the supplementary condition'® that the initial data set arises from a space-time with
a conformal completion at infinity which is “sufficiently large in time”. By this we mean
that the interval of the t—coordinate below has length at least .

A (four-dimensional) space-time (M, 4g) is said to be asymptotically-anti-de Sitter if
it is smoothly conformal to a manifold M with boundary 0 M=T~Rx 5?2, with the
usual condition that the conformal factor 2, relating the metrics as *g = Q72 4§, vanishes
on 7 precisely at order one. It is further assumed that the restriction of *§ to the conformal

boundary at infinity equals
hijdatda? = d6? + sin® 0dg® — dt?. (3.51)

It is then possible to introduce?® coordinates (R, z’) for i = 1,2,3 so that the space-time
metric g = g can be written in the form

1 P
g= ﬁ(dRQ + hij(R, 2¥)dz'da?) (3.52)
with

The metric (B.4H) with 2b? = 1 and H = 0 takes this form, though the metric of anti-de

Sitter space is more commonly written as
g = dip* + sinh? 9 (d6? + sin® 0d¢*) — cosh? pdt?, (3.54)

when the substitution R = e~% will cast it in the form of (B:52).

19This hypothesis can often be removed by using the Killing development. This is, unfortunately, not the
case for the problem at hand because of the zeros of the Killing vector at Z.

20T this section, and only in this section, we use the convention that z° = R; the reader should not
confuse this with a time-coordinate.
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Our aim now is to show that the metric of the Siklos wave (B.49) cannot be written
in the asymptotically-anti-de Sitter form (B.59) unless it is exactly anti-de Sitter. Our
technique will be, first to obtain an asymptotic form of the Killing vector X and then to
show that the equation (B.50) is incompatible with (B.53) unless ¥ = 0.

We suppose then that X is a Killing vector for the metric (B.53) and write it in the
form

0 -0
X=A—+B"—. 3.95
oR "7 or (3.55)
The Killing equation may be written as
Xﬂfaygag + gMagX’Y + gwgaaXﬂf = 0.
Substituting from (B.59) we obtain for the (00) component of this
0A
R——-A=0
OR
so that
A= RV(z") (3.56)
for some V' (x%), to be found. For the (0i) components we find
0A oBJ
s " BR
so that
BY(R,2") = B}(z") + O(R?). (3.57)
Finally, for the (ij) components we find
0
The leading term in this equation, with what we have already, requires
Lpyhij = 2Vhij . (3.58)

Thus By is a conformal Killing vector on Z, and our next task is to find these. We proceed

as before, by setting
0

oy®

Za _ a a
Boaxi _B§+A

where a = 2,3 and (y%,4%) = (0,¢). This is to be a conformal Killing vector of the
metric (B.51)) which we write as

(3.59)

fotijdmidxj = Napdy®dy® — dt>.

The conformal Killing equation (B.5§) may be written in the form

BEOghij + hid; BE + hy;0;BE = 2V hy
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from which, as before, we obtain the system of equations

op
v (3.60)
03 DA
= — 61
LANap = 2V 0ap- (3.62)

To solve these, we need to know some facts about conformal Killing vectors on S? (which,
by (B.62), A = A%0, is). The general solution of (B.63) is of the form:

ab oo

A® — 79 _
oyb

(3.63)
where Z¢ is a Killing vector for n and « is a conformal scalar, by which we mean a solution
of the equation:

DDy = —amg (3.64)

where D, is the Levi-Civita covariant derivative for . Thus, from ([B.69), V = a. Next, it
now follows from (B.61)) that

0 Oa AL
oy B+ E) = Tab

Taking the divergence of this we find that

0z Jda
=0; =0y — — 3.65
for some 3y independent of y®. Finally, integrating (B.60) over S?, and noting that «
integrates to zero because of the equation Aa = —2«, shows that Gy is actually constant
and « satisfies )
0«

which is readily solved.

We may write out solutions explicitly by regarding the S? as the unit sphere in R? with
Cartesian coordinates X = (X1), i = 1,2,3. Then « is linear in X! and, taking account
of (B.64), may be written in the form

a=—(a-X)cost — (b-X)sint (3.67)

in terms of a pair of constant vectors a and b. By (B.6§) we obtain
B=p0— (a-X)sint+ (b - X)cost, (3.68)

while Z is a Killing vector, so that

a 8 _ i 8
25 = MyXi s (3.69)
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for a constant, antisymmetric matrix M;; (where necessary, indices i,j can be raised or
lowered with 6j;).

We have found an asymptotic form for the most general Killing vector of (B.57). How-
ever, we are interested in null Killing vectors, so that by (B.59)

9(X, X) = 1

= 73(A% + hi;B'B?) = 0,

which implies in particular that

hi;BiB} =0, (3.70)

so that By is also null.
From (B.59) and (B.63) this is the condition

B+ 0 (Zy — Bat)(Zy — Bpar) = 0.

Substituting into this from (B.67), (B.6§) and (B.69), we obtain a series of algebraic equa-
tions by equating to zero coefficients of 1, sint, cost and cos2t. These are

al* = b* a-b=0 (3.71)
then
Boas + Mijb; = 0
—Bob; + Mija; = 0
so that

Mi; = e(aib; — ajb;) (3.72)
for constant €, and finally
—63 + MM X' X3 + |a]> — (a-X)? — (b-X)2 =0,
which implies just
Bo = —¢lal? (3.73)

with €?|a|? = 1.

We have found the general form of any null Killing vector in any asymptotically adS
space-time, so that X of section B.J must have this form, in any Siklos wave which is
asymptotically adS. There are two families depending on the sign of ¢ and the six real
parameters (a,b) subject to (B.71]). Replacing the Killing spinor by a multiple thereof if
necessary, we can without loss of generality assume |a| = 1. All choices are equivalent up
to rotation and the discrete symmetry ¢ — ¢ + 7/2. We make the choices

a; — b2 =e=1
with other terms zero, then with X = (sin 6 cos ¢, sin 0 sin ¢, cos ) we obtain

a = —sinfcos(¢p —t) (3.74)
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and

By = (—1+sinfsin(¢ — t))% + cos 6 cos(¢p — t) 0

= (3.75)

0

1 —si —t 0)—.

+(1 —sin(¢ — t) csc )8¢

Now we have the Killing vector X, at least asymptotically, we need to solve (B.5(). For
this we need the asymptotic form of ¥ compatible with (B.52). We recall some of the

conventions associated with conformal rescaling in asymptotically adS space-times. The
unphysical metric is

Jap = R’gap
with R and g5 as in (B.52). From (B.59) and (B.56), we see that the Killing vector X

extends to a smooth vector field on Z, and we have
2

ViXy = 25

X,0,R+O(R?), (3.76)
where X u = GuwX"; here and below O(R") refers to components in the coordinate system
(R, z"). From (B.30)), where now b = 1/v/2, and (B.47), the Weyl tensor W equals
W =AdX @dX — (xdX) ® (*dX)) + B(dX ® (xdX) + (xdX) ® dX) , (3.77)
where * is the space-time Hodge-dual, while
V=A-iB

and ¥ is as in (B_47|) and (m) Let N = ROg be a unit normal to the level sets of R.

Recall that the electric and magnetic Weyl tensors at a hypersurface with normal N
are defined as E;; := i,m-(;N'YN‘s and B;; := *WZ-W(;NVN‘; respectively, where W is the
Weyl tensor and *W is its dual. The rescaled electric Weyl tensor, finite on Z (see [B1],
Lemma 3.1] ) is, by equation (2.14) of [BY] and by (B.76)-(B-77)

E;j = R™'W,,;sNTN?
= RS (AXin + O(\IJR)) .

Similarly the rescaled magnetic part of the Weyl tensor, finite on Z, is
Bl’j = R_l *‘/Vi,yj(;N’yNé
= R (BXX; + O(UR)) .

It follows that limp_,o R~°W¥ exists, and

lim B = MX;X; , (3.78)

R—0
where M = limp_o R7°RV. Up to a multiplicative factor, M is the integrand for the
asymptotically defined, Ashtekar-Magnon global charges [Bg, Bd]. If M is zero on Z then

all global charges are zero. M is bounded on Z away from the zeroes of X, but could be
singular where X is zero.
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Now from (B.50)
XY9(MR%) =0,
so with X given by (B.59), (B-74) and (B.79), we need on Z that

oM
oz’

Bi—— — 5sinfcos(¢p — t)M = 0. (3.79)
On the equator (B.79) can be integrated to give
M(t,6 =7/2,0) = (1 —sin(¢ — )2 f(p+1), (3.80)
for some function f of ¢ +t. From (B.7§) one then has
By = (1—sin(¢— 1) f(¢+1),

so f vanishes if a smooth global Z exists.
For cos 6 # 0 introduce F' by

M = (cos0)°F(t,0, ) (3.81)
then (B.79) becomes
o OF OF . OF
(=1 +sinfsin(¢p — t))a + cos 6 cos(¢p — t)% + (1 —sin(¢ —t) csc 9)% = 0.

i.e. F'is constant on the integral curves of the vector field By, which we need to consider.
We shall find that cosf is either zero or asymptotic to zero along every integral curve,
and that the components of X are asymptotic to zero along every integral curve. From
the rate at which these quantities vanish, it will follow from (B.7§) and (B.81)) that, on the
curves with cos @ # 0, F vanishes on Z, and so does M, while it will follow from (B.8Q) that
M is zero on the curves with cosf = 0. Note that the Ashtekar-Magnon mass equals the

boundary term which arises in Witten’s positive energy argument by [B)]. Hence, under the
hypotheses of Theorem 3.9, we can then conclude that the initial data set can be embedded
into anti-de Sitter space-time.

The integral curves of By satisfy the system of equations

dt . .

T (—1 +sinfsin(¢p —t)) (3.82)
do

o = cos 6 cos(¢p — t) (3.83)
;l_gz)\ﬁ = (1 —sin(¢ — t) csc6) (3.84)

in terms of a real parameter A\ along the curves.

Equating the right-hand-sides to zero, we see that the fixed points of By lie on the
curve I' defined by 0 = 7/2, ¢ —t = 2km + /2, for integer k, which is a helix on Z.

We first investigate integral curves with constant #. Any curve on which 6 is constant

must, by (B.83), have cosf or cos(¢ — t) vanishing, but in the second case, by (B.89)
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and (B.84)), we arrive again at cosf = 0. Thus the only integral curves with 6 constant
have § = 7/2. Going further with these, we find that ¢ + ¢t must be constant on them.
Introduce v by ¢ —t = 2y + m/2 then we find an equation for v which integrates to give

coty =2(Ag — ).
for some constant Ay, and so
1 —sin(¢ —t) = 2sin®y = 2(1 + 4(\g — N)?) L.

Now suppose we have an integral curve with a point where cos @ # 0. It is straightfor-
ward to check that the following are constants along the integral curve:

sinfsin ¢ — cost

a= cos 0 (3.85)
b sin @ cos ¢ + sint (3.56)
cos 6

and then that

i sint _
d\ \ cosf -

i cost 0
d\ \cos® ) 7

so that
sint
sl aX+c (3.87)
cost
=bl+d 3.88
cos 6 td ( )

for constants ¢ and d. Squaring and adding these we find
sec? 0 = (a® + b*)A? + 2(ac + bd)X + (¢ + d?). (3.89)

If a® +b? = 0 then 6 would be constant, but we have just seen that the only integral curves
with constant § have cos@ = 0 at all points. Thus a? 4+ b?> # 0, but now as A goes to plus
or minus infinity, sec @ is unbounded, so that # must tend to 7/2 on each integral curve on
which cosf is not always zero. More precisely, (B.89) shows that

0—7m/2~A"1 = cosf~\!

at infinity, in the sense that there exists a constant C such that C™'A\7! < cos§ < CA71L.
We now look at the components of By from (B.7]) along the integral curve. From (B.8),
(B.86), (B.87) and (B.8§) we have

tanfcosd = —al+ (b—c¢); tanfsing = b\ + (a +d)

so that
sin@sin(¢ —t) — 1 = (ad — be) cos®§ ~ A2 (3.90)
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To justify “~”, we note that the cofficient of A=2 cannot be zero as

ad — be — acost —bsint

cos 6

and if this were zero then ¢ would be constant along the integral curve, which is inconsistent
with (B.89). In the same manner we find that

cosfcos(¢p —t) ~ X2,
sm(.(b—t) et
sin 6

so that, by (B.79), all components of By vanish at the rate O(A=2) and no faster along
the integral curve. Putting this with (B-89) we find that (cos§)°X ® X is O()\) along the
integral curve and therefore F', which is constant along the integral curve, must vanish.
Thus F' vanishes on Z, therefore so does M and all the asymptotically-defined momenta.

4. Ricci-flat conformal infinity

So far we have been mostly assuming that Scri has spherical cross-sections. In this sec-
tion we collect some results about alternatives. In section [I.] we will prove an analogue
of the angular-momentum inequality (@) for toroidal Scris; section [L.9 discusses some
other possibilities. In the remaining two sections we review some examples saturating the
inequality.

4.1 Toroidal infinity

We suppose that conformal infinity has toroidal topology
T t:=8'x...xS!

with a flat metric h. The space-time metric

+1 2 P oy
where / is related to the cosmological constant A by the formula 2A¢? = —n(n — 1),

provides a static vacuum example satisfying all the conditions of the positivity theorem.
The slices t = const. have complete induced metric, with one conformally compactifiable
end where r — o0, as well as a “cuspidal end” where r — 0. The toroidal Kottler black
holes [[[§ also belong to this class. Note that the coordinate r in ([£1]) can be rescaled by
a constant factor, a subsequent redefinition of 7 and of ¢ preserves then the general form
of the metric. A natural way of getting rid of this freedom is to assume that the volume
of (T 1, FL) equals 167. Alternatively, one can assume that this volume equals one, and
remove the normalisation constant 1/167 in front of (2.9).

We consider the following, trivial spin structure over T"~!: Let &” be a product
Hermitian bundle of spinors over T"~!, with a representation of the Clifford algebra of
(T, h) via anti-hermitian matrices. On T™~! we use manifestly flat local coordinates z2,
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a=1,...,n—1, ranging from 0 to 2w, and we choose a spin frame so that all connection
coefficients vanish, with the Clifford action of parallel vectors represented by constant
matrices.

The Witten-type proof of the positive energy theorem requires imaginary Killing
spinors in the asymptotic region Sext “near conformal infinity”; in the current case this is
the region r > ry for some large g, with the initial data metric g approaching the space-
part of ([l.7]) as in (P.7]), and with K;; approaching KZ] = 0 as required there. To construct
those spinors we first consider &’ = &” @ &”, the direct sum of two copies of &”, equipped

with the direct-sum sesquilinear product (-, -)g:

(1, 92), (w1, 02))@ = (Y1, 1) + (Y2, p2) - (4.2)

For X € TT" ! we let X- denote the Clifford action of X and, similarly to (-11), for
1,19 € 6" we set

(W1, 4h2) = (2,11) (4.3a)
X - (h1,92) = (X 91, =X - ¢o) (4.3b)
Dx (¢1,12) := (Dxv1, Dxpa) - (4.3¢)

One checks that ({:3d) defines a representation of the Clifford algebra of (T"!, k) on &'.
Further

)2 =1, (4.4a)
VX e TT" ! 49X . = —X .40, (4.4b)
(") =17, (4.4c)
DA’ =+D, (4.4d)

Next, it is convenient to pass to yet another direct sum bundle & = &' & &', equipped
with the direct-sum Hermitian product which will be denoted by (-,-)gq. We define, for
1,09 € &, X e T 'M and a € C,

Y (1, h2) = (=2, 91) (4.5a)
(X - 4+a7°) (1, 92) := (X - +a7°)p1, =(X - +a7")da) (4.5b)
Dx (1,v2) == (Dx1, Dxba) . (4.5¢)
This provides one more representation®' of the Clifford algebra of (T"~! ), on &, with
moreover
(v =-1, (4.6a)
VX eTT" 1, aeC (X +ay’) = —(X - +ay")y", (4.6b)
()T = =", (4.6¢)
Dy =~"D . (4.6d)

21This representation will not be irreducible, but this is irrelevant for the positivity argument. In fact,
already the doubling () will lead to a reducible representation of the (T™~*, h)-Clifford algebra extended
by adding v° when n is odd.
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We assume that on Seyt the background metric b takes the form
b= (dz™)? 4 *" b ; (4.7)

this corresponds to the space-part of the metric ([.]) when p = 1/(2¢). The conformal
boundary at infinity is constructed by multiplying by e *#*"  and replacing 2" by y =
e~212"; the boundary is then the set {y = 0}. We note that ([£7) is a complete space-form
metric.

Any vector Y € TSyt can be written in form Y = Y"0,, + X%e,, where e, = e 2pa” fas
and where the f,’s form a h—ON basis. Note that {On,€q} form a b—ON basis. We define
the b—Clifford action of Y on & as

Y =Y"" + X, - .

Let the co-frame §° = (da™,0%) be dual to (d,,e,), then the only non-vanishing con-
nection coefficients are —wgpnp = Wnap = —2hap. One then has

o 1 . . 0, , k=mn;
Dk = 8k — Zwijkez P - {a:_FM,VNGb kb

It follows (compare [B7]) that for any x € &', with constant entries, the spinor field

er”

Y= \/5 (iXaX) ) (48)

defined over Seyt, is an imaginary Killing spinor for b; by definition,
Dyt = —piY -4 | (4.9)
where D denotes the covariant derivative operator of b. One also has
V Z € TSext Vziﬂ = (DZ — %Io(ijZiej . 70>1/A) = —uiz - TZJ , (4.10)
because the background extrinsic curvature KZ] of the slices t = 0 for the associated space-

time background metric "*1b vanishes.

Let IC denote the space of imaginary Killing spinors ¢ € I'© constructed so far. As
already mentioned in section [, to any element of K one can associate a KID of the back-
ground initial data (b,0) as follows

K39 — <V = (), Vge Y = (1,7 1) a0 + Z(%fa ) e ea) . (41)
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Chasing through the definitions we find

V = (¥, )ae = 2" (x, X e

=(x1,x2)
= " () + (o)) (4.12)

Y = 0,7 " P)ee On + Z(T/), fa - "Y)es €a
N— 0

=0

= Y 6 fa 1o ea = ) (k1 fa x2) = (2o fa - xa))fa

a a

=23 R fae o)) (4.13)

Let m denote the value of H corresponding to the background-KID V = e2" /¢,
Y = 0. This last KID corresponds to the Killing vector d; of the metric (1)), so that
m has the interpretation as energy. Similarly let j;) be the value of H corresponding to
Jo; thus V=0 and Y9, = f,. Clearly each jy) has a natural interpretation of angular
momentum.

Under the hypotheses of Theorem [ll, one concludes that the composition of (f.11)) with
the Hamiltonian map (R.4) defines a positive Hermitian form on K. We have

H(V,Y) = H(((x1,50) + (x2, x2)(€#,0) + 2 3 R(0xr, fa - x2))(0, fa))

= ((x1,x1) + (x2, x2))fm + 22%(<X1,fa “X2))J@) =0,

for all constant spinors (x1, x2). This is possible if and only if*?

2A - - ; )
m > _7)’3’7 \J\iz \/](21)+"'+J(2n)- (4-14)

n(n—1
We have thus derived the toroidal equivalent of Maerten’s inequality (B.J); we emphasise
the spin-structure compatibility condition (R.7).
In space-dimension three ({.14) can be viewed as the special case ¢ = 0 of (B.9), but
the justification of this appears to require the work above.
Let j, be the angular momentum associated with the Killing vector d,. It should be

clear that with this definition the inequality in (fL14) remains valid if |j] is taken to be
vV habj, gy, where h is the inverse matrix to hqp == h(9a, 9).

4.2 (General conformal infinities with parallel spinors

We now consider a metric (f.1]), without assuming that h is flat: instead we assume that the
manifold ("' M, ﬁ) carries a non-trivial covariantly constant spinor y, section of a spinor
bundle &”. (Such manifolds are necessarily Ricci flat, compare [B§-[9].) The construction

2Indeed, if || = 0 the inequality (}1.14) is clear. Otherwise choose x2 = >l fa- x1/|J] to conclude
that () is necessary. The proof of sufficiency is left to the reader.
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of the background imaginary Killing spinors of the previous section carries over with only
trivial modifications to such a setting. Under the hypotheses of Theorem [l| we then obtain
a positive definite quadratic functional on the space of covariantly constant spinors of
("M, ﬁ). It appears that an optimal form of the resulting constraints has to be analysed
case-by-case. Here we only note the following: For every h-parallel x the norm squared
{x,X) is constant over "~1M. Tt follows that we can normalise Y to obtain two KIDs as
in ([{11) with x2 = £x1 = x in (EI2)-(.13), and with time component of the associated
KIDs equal to one. The positivity of H for both the plus and minus signs then gives

tm = |jl

where j is the angular momentum associated with the b-Killing vector Y corresponding
to x, and ¢ has been defined in (B.9). We thus obtain positivity of m, together with an
upper bound on |j| in terms of m. The result is optimal if the space of covariantly constant
spinors of ("1 M, ﬁ) is one-dimensional. Otherwise we clearly also have the non-optimal
inequality

tm > sup 13(Xy)l

where the supremum is taken over the covariantly Killing spinors 1) normalised as described
above, and j(X,) denotes the angular momentum along the Killing vector X, associated

to .
4.3 Nonrigidity in the toroidal case for n =3

By section B.1] equality in ([.14) leads, locally, to space-forms or to Siklos waves. In order
to see that those are compatible with the toroidal topology at infinity note, first, that the
metric (B.4H) with 26> = 1 and H = 0 gives anti-de Sitter, by introducing t = (u + v)/v/2
and z = (v —u)/V/2:

1

g= —2(de + dy? + d2? — dt?) .

x
This metric covers part of anti-de Sitter space-time. However, we now impose a periodic
identification in y and in z. Then this is a metric with a Z which is topologically T? x R
at z = 0 and a ‘hyperbolic cusp’ as z — oo, as in ({.1]). We can retain these asymptotics

with a nonzero H (u,z,y) which is suitably periodic in u and y and decays appropriately
in x as x goes to zero. A simple class of examples may be generated as follows: take

H=af'(x) - f(a)
then from (B.4§) we find

o (1Y 19

while from (B.49)
U= —%4(30]”")/ (4.16)
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For the dominant energy condition (T,,v®® > 0 for timelike v®) to hold we need ® to be
non-negative so set ¢ = %ﬁp(:v) for a non-negative function p. For simplicity, we assume
that p has compact support, and then we solve for f” as

f@) = [ ol (4.17)

Suppose p is supported in 0 < a < < b < oo, then so is ® (and so also is the energy-
momentum tensor). For x < a, we find f” = mx with m = fab pdzx and then ¥ = —ma5/2,
which is the rate of decay we found we required in (B.4). Thus Z exists at x = 0 with this
H, as with H = 0. Letting ¢t and z be as at the beginning of this section, we require the
level sets of ¢t to be spacelike. This is equivalent to

H<2, (4.18)

which can be arranged by the choice of f(0) for any p as above. We note the following
formulae for the metric and second fundamental form of the hypersurface S := {t = 0}

o H H
gijda'da’! = 1‘72{611'2 + dy? + (1 — 5)d22} , y/detgi; = x5 /1 — 5 (4.19)
H H
g = —x 2 (1 + —) . gu=x 2, (4.20)
2 2
o o'
Kiidr'dy!) = —————dxdz , 4.21
e S 42
HI)Q
K= &) 1.22
K = s (422

which shows that K satisfies the decay conditions needed for a well-defined mass (recall
that p vanishes near = 0). One can check that

z .3 3 [
1) = H0)+ [ Lotwir+ 5 [ otway.

so that H is a non-decreasing function of x for non-negative p and, subsequently, that

(#.18) will hold if and only if
3H(0) + / 3p(x)dr < 6. (4.23)
0

Assuming this condition, and a compact support of p in (0,00), the hypersurface
S = {t = 0} with the induced fields provides an example of non-trivial initial data set
which saturates the inequality ([.14), and satisfies all the hypotheses of the positive energy
theorem in section f.

For x > b, ¥ = 0 and the space-time is locally anti-de Sitter. For example, if we choose
H(0) =0 = f(0) (note that the choice of f’(0) is irrelevant as it does not change H) then
for x > b, H is constant and equal to Hy, = (fab x3pdx)/3. The metric is

1 Hy
g=—(da® + dy* + dz* — dt* — = (dt = dz)?)
X
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but the coordinate transformation

H H
dz = dz(1 — — —dt
z 2( 1 )+ 1
- H H
dt = ——=4d 14+ =2)dt

1 z+ (14 4)

has the effect of setting H, to zero.

Another interesting example is f = C'sinhxsinysinu, where C is a constant. Now
H = zf, — f gives vacuum. It satisfies the asymptotic conditions, with ¥ = O(2°) for
small x, but because the solution is exponentially large for large = the existence of globally
regular spacelike surfaces is not clear. This leads naturally to the question of existence of
non-trivial vacuum initial data sets saturating the angular momentum inequality (4.14).
Recall that no such black hole solutions exist by the results in section B.9, but the general
result is not known.

4.4 Higher dimensional examples

Gibbons and Ruback [I] have presented some metrics which are generalisations of the
Siklos metrics to higher dimensions (compare [[J, p. 14]). In space dimension n (so space-
time dimension (n + 1)), the metrics can be written in the form

1
gttt = 5257 (dz? + hapdy®dy® — 2dudv — H (u, z,y*)du?) . (4.24)

where h = hgydy®dy® is a Ricci-flat, Riemannian metric on an (n — 2)-dimensional manifold
"=2M (compare (B.4H)). From now on we set 2b> = 1. To analyse the imaginary Killing
spinor equation we use the frame

_du

T

, 91:l(dv—|—gdu), 92:d_9”, eazlé“,
X

x x

90

where 6% is an ON-frame for ("~2M,h). A somewhat lengthy calculation shows that if
1, is a covariantly constant spinor for h then, in a basis of the spinor bundle where the
~—matrices are independent of z, u and v, the spinor field ¥ = 2~1/24, is an imaginary
Killing spinor for ({.24) and, in fact:

Proposition 1 The metrics ) admit non-trivial imaginary Killing spinors if and only
if (""2M, h) admits non-zero covariantly constant spinors.

So, when such spinors exist, the volume integral in the Witten identity vanishes, there-
fore so does the boundary integral. Assuming the asymptotic conditions permit the ex-
istence of Z, the metrics ({.24) will therefore saturate the n-dimensional version of our
bounds.

The Ricci tensor Ric?® for ¢ may be written

RicF = —ng®f 420X @ X
where X = 0/0v and @ is the function
xd <82H (n—1)0H

4

0x2 x Oz

+AhH> )
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where Ay is the Laplacian for h. The dominant energy condition again requires ® to
be positive and as in the three dimensional case we can readily find solutions with H
1,n+3
8

independent of u and y®: set ® = p(x) then solve

(¢! " H'(2))" = —p,

where prime denotes d/dx, to find

H'(zx) = 2"} /OO p(s)ds, (4.25)

(compare ([.17)). Now if we assume that "~2M is compact and that u is periodic, we
obtain a solution with a Z located at & = 0, whose cross-sections are "~2M x S'. The
discussion around ({I§) goes through as before: Kjjdz'dz? is as in (f:21)), where now
z' = (z,y% 2), and (E19) is replaced by

ggdedad = w2 de? 4 hgdydy’ + (1~ 2 )az2}.

Therefore, under ({.1§), and assuming that p is non-negative and compactly supported,
these solutions will satisfy the global and asymptotic conditions of the positivity theorem.
For the counterpart of (B.7§) we obtain, with conventions as above and in [B5 and
i =z
with R = oL

~ 1 T \2—n
By = g () W
_2 T 2—n ~ ~
= — | ——= H'X; X,
(n—1) <\/§ ) o
which, by (f.25), has a finite limit on Z where z = 0.
The imaginary Killing spinors described immediately before the statement of Propo-
sition [| have the property that
X-¢=0, (4.26)

where, as before, X = <¢,707“¢>8M, and - denotes the space-time Clifford multiplication.
An analysis similar to that in section B.d applies, whatever n > 3, as follows: Differentiating
(4.26) one finds, for all Y,

(VyX)- ¢~
By e.g. [13, Lemma 2.1, point 2] we then have
VyX ~ X |
which immediately implies staticity:
X Vo X, =0.

The search for black hole solutions in this class is inconclusive: Any event horizon would
have to be degenerate, and then the remaining arguments of section B.9 show that the space-
metric on the event horizon has a Ricci tensor proportional to the metric, with negative
proportionality constant. The consequences of this are not clear, as the constraints imposed
by topological censorship [B3] are less stringent in higher dimensions.

,38,



Acknowledgments

We thank the Newton Institute, Cambridge (PTC, DM, PT), and the AEI, Golm (PTC,
PT), for hospitality and support during part of work on this paper. We are grateful to

H. Baum, G. Gibbons, F. Leitner, and M. Stern for comments and bibliographical advice,
and to M-G. Greuel and S. Szybka for help with SINGULAR and MAPLE calculations.

References

[1]

D. Maerten, Positive energy-momentum theorem in asymptotically Anti-de Sitter space-times,
Annales H. Poincaré 7 (2006) 975 [math.DG/0506061]].

D. Birmingham, Topological black holes in anti-de Sitter space, [Class. and Quant. Grav. 16

P.T. Chrusciel and G. Nagy, The mass of asymptotically anti-de Sitter space-times,

X. Wang, Mass for asymptotically hyperbolic manifolds, Jour. Diff. Geom. 57 (2001) 273.

asymptotically hyperbolic 8 manifolds I, Communications in Mathematical Physics 249

M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter spaces, [Commun. Math. Phys)

P.T. Chrusciel, J. Jezierski and S. Leski, The Trautman-Bondi mass of initial data sets,

P.T. Chrusciel, On the relation between the Finstein and the Komar expressions for the

G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy

F. Leituer, Imaginary Killing spinors in Lorentzian geometry, Jour. Math. Phys. 44 (2003)

H. Baum, Twistor and Killing spinors in Lorentzian geometry, Global analysis and harmonic
analysis (Marseille-Luminy, 1999), Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000,

2]
(1999) 1197 [hep-th/9808037.
[3] P.T. Chrusciel and M. Herzlich, The mass of asymptotically hyperbolic Riemannian
manifolds, Pacific Jour. Math. 212 (2003) 231-264, .
4]
and Quant. Grav. 18 (2001) L61| [hep-th/001127Q).
[5]
[6] X. Zhang, A definition of total energy-momenta and the positive mass theorem on
(2004) 529.
7]
98 (1985) 391l.
8]
Theor. Math. Phys. 8 (2004) 83 Jgr-qc/0307109.
[9]
energy of the gravitational field, Ann. Inst. H. Poincaré 42 (1985) 267.
[10]
conjecture for general relativity, [Phys. Rev. D 59 (1999) 026009 [hep-th/9808079].
[11] R. Clarkson and R.B. Mann, Eguchi-Hanson solitons, hep—th/0508109
[12]
4795.
[13]
pp. 35-52.
[14] 1. Kath, Killing spinors on pseudo-Riemannian manifolds, 1999, Habilitationsschrift,
Humboldt Universitat.
[15] C. Bohle, Killing spinors on Lorentzian manifolds, Jour. Geom. Phys. 45 (2003) 285.
[16]

G.W. Gibbons and P.J. Ruback, Classical gravitons and their stability in higher dimensions,
[Phys. Lett. B 171 (1986) 39(.

,39,


http://arxiv.org/abs/math.DG/0506061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C16%2C1197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C16%2C1197
http://arxiv.org/abs/hep-th/9808032
http://arxiv.org/abs/dg-ga/0110035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2CL61
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C18%2CL61
http://arxiv.org/abs/hep-th/0011270
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C98%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C98%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C83
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C83
http://arxiv.org/abs/gr-qc/0307109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C026005
http://arxiv.org/abs/hep-th/9808079
http://arxiv.org/abs/hep-th/0508109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB171%2C390

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M.T. Anderson, P.T. Chruéciel and E. Delay, Non-trivial, static, geodesically complete

space-times with a negative cosmological constant, II. n > 5, gr-qc/0401081.

F. Kottler, Uber die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,
Annalen der Physik 56 (1918) 401.

H. Blaine Lawson and M-L. Michelsohn, Spin geometry, Princeton Mathematical Series,
vol. 38, Princeton University Press, Princeton, 1989.

G.W. Gibbons, S.W. Hawking, G.T. Horowitz and M.J. Perry, Positive mass theorems for
black holes, |Commun. Math. Phys. 88 (1983) 294

M. Herzlich, The positive mass theorem for black holes revisited, Jour. Geom. Phys. 26
(1998) 97.

R. Bartnik and P.T. Chrusciel, Boundary value problems for Dirac-type equations, (2003),
path.DG/0307279.

L. Andersson and M. Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic
manifolds, Annals of Global Anal. and Geom. 16 (1998) 1 [ig-ga/9707017).

G.W. Gibbons, C.M. Hull and N.P. Warner, The stability of gauged supergravity,

B 218 (1983) 173.

[25]

J.B. Gutowski and H.S. Reall, General supersymmetric AdSs black holes, UHEP 04 (2004 )

04§ [hep-th/0401129].

[26]

M. Cveti¢, P. Gao and J. Simon, Supersymmetric Kerr-anti-de Sitter solutions,

72 (2005) 021701 [hep-th/0504136].

[27]

28]

R. Penrose and W. Rindler, Spinors and spacetime I: Two-spinor calculus and relativistic
fields, Cambridge University Press, Cambridge, 1984.

T. Parker and C.H. Taubes, On Witten’s proof of the positive energy theorem,

Math. Phys. 84 (1982) 223

[29]

[30]

[31]

[32]

[35]

S.A. Huggett and K.P. Tod, An introduction to twistor theory, second ed., London
Mathematical Society Student Texts, vol. 4, Cambridge University Press, Cambridge, 1994.

M.T. Anderson, On stationary vacuum solutions to the Einstein equations, Annales Henri

Poincaré 1 (2000) 977 [Er-qc/0001091].

S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved
charges in asymptotically AdS-spacetimes, |Class. and Quant. Grav. 22 (2005) 2881|
[hep-th/050304§].

P.T. Chrusciel, H.S. Reall and P. Tod, On non-existence of static vacuum black holes with
degenerate components of the event horizon, [Class. and Quant. Grav. 23 (2006) 549

[Er-qc/0512041].

G.J. Galloway, K. Schleich, D.M. Witt and E. Woolgar, Topological censorship and higher
genus black holes, [Phys. Rev. D 60 (1999) 104039 [gr-qc/9902061]].

S.T.C. Siklos, Lobatchevski plane gravitational waves, Galaxies, axisymmetric systems and
relativity: essays presented to W.B. Bonnor on his 65th birthday, M.A.H. MacCallum, ed.,
Cambridge Univ. Press, Cambridge, UK, 1985, pp. 247.

A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities,
[Class. and Quant. Grav. 17 (2000) L17 [hep—th/991123(].

,40,


http://arxiv.org/abs/gr-qc/0401081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C88%2C295
http://arxiv.org/abs/math.DG/0307278
http://arxiv.org/abs/dg-ga/9707017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB218%2C173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB218%2C173
http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://jhep.sissa.it/stdsearch?paper=04%282004%29048
http://arxiv.org/abs/hep-th/0401129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C021701
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C021701
http://arxiv.org/abs/hep-th/0504136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C84%2C223
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C84%2C223
http://arxiv.org/abs/gr-qc/0001091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C2881
http://arxiv.org/abs/hep-th/0503045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C549
http://arxiv.org/abs/gr-qc/0512041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C104039
http://arxiv.org/abs/gr-qc/9902061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C17%2CL17
http://arxiv.org/abs/hep-th/9911230

[36] A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, |Class. and Quant)

Grav. 1 (1984) L34.

[37] H. Baum, Complete Riemannian manifolds with imaginary Killing spinors, Ann. Global
Anal. Geom. 7 (1989) 205-226.

[38] R.L. Bryant, Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci
tensor, Global analysis and harmonic analysis (Marseille-Luminy, 1999), Sémin. Congr.,
vol. 4, Soc. Math. France, Paris, 2000, path.DG/0004073.

[39] A. Ikemakhen, Groupes d’holonomie et spineurs paralléles sur les variétés
pseudo-riemanniennes complétement réductibles, C. R. Math. Acad. Sci. Paris 339 (2004),
203.

[40] H. Baum and I. Kath, Parallel spinors and holonomy groups on pseudo-Riemannian spin
manifolds, Ann. Global Anal. Geom.17 (1999) 1.

[41] McKenzie Y. Wang, Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989)
59.

[42] McKenzie Y. Wang, On non-simply connected manifolds with non-trivial parallel spinors,
Ann. Global Anal. Geom. 13 (1995) 31.

— 41 —


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C1%2CL39
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C1%2CL39
http://arxiv.org/abs/math.DG/0004073

